手持式和便携式无线产品,如智能手机和可穿戴设备依靠微小的芯片、贴片和印制线天线,可放置在设备。尽管这些小型器件解决了在小尺寸系统中携带多频带天线阵列的问题,但它们也引入了辐射效率下降、阻抗匹配以及与附近物体和人体的交互等相关问题。
为解决这些问题,设计人员开始采用新的设计和电路方法,让这些天线不只成为一个独立的元器件,而是成为能够化解上述诸多设计挑战的动态天线子系统的一部分。这一设计转变需要进行大量仿真和分析,而不断改进的场解算器软件可以满足这一需求。
芯片、贴片天线提供了折衷之选
从传统的外部鞭形或短截天线过渡至芯片和贴片天线的原因很多,首当其冲的是外部天线存在的美观性和易折性问题。从性能的角度而言,智能手机等设备在给定的频带往往需要多个天线才能提供天线分集,进而改善性能。此外,多频带设备(尤其是与新兴的 5G 标准兼容的设备)在其必须支持的每个频带,都需要单独的独立式天线。尽管有这么多原因,但芯片和贴片天线也有自身的短板。
芯片天线使用多层陶瓷结构构成在目标频率谐振的元器件(图 1)。与其他所有表面贴装元器件一样,它们的尺寸很小,可以轻松地贴装在 PC 板上。
图 1:没有体积小、成本低且易于应用的陶瓷芯片天线,许多便携式无线设备将无从实现。图中显示的是 Johanson Technology 2450AT18B100E,位于广泛使用的 2.4 至 2.5 GHz 频段的中间位置。
我们用两个例子来说明它们的特性。Johanson Technology 2450AT18B100E 是适用于 2.4 至 2.5 千兆赫 (GHz) 频段的 1.6 x 3.2 mm 芯片天线,尽管它的体积很小,却能提供近乎全向的辐射模式,而无需考虑方向(图 2)。类似这样的天线在便携式和手持无线设备中已得到广泛的成功应用。尽管芯片天线自身很简单,但设计人员必须将相关的驱动器电路与其 50 Ω 标准阻抗相匹配。当在分集架构中使用多个芯片天线时,这可能成为一大难题。
图 2:Johanson 描述了芯片天线在全部三个轴(自上而下分别为:a) XY、b) XZ 和 c) YZ)上的辐射模式;请注意,该模式在所有三个轴上近乎全向。
另一款芯片天线是 Taiyo Yuden AF216M245001-T,用于仿真同样适合 2.4 至 2.5 GHz 频带的单极螺旋形天线。该天线的尺寸为 2.5 x 1.6 mm,同样具有近乎全向的特征,并且可在 2.45 GHz 至 2.7 GHz 频带保持低于 2:1 的 VSWR(图 3)。
图 3:Taiyo Yuden 的 AF216M245001-T 芯片天线可在其主要工作带宽 2.45 GHz 至 2.7 GHz 范围内保持 2:1 的 VSWR。
由于芯片天线具有成本低、体积小和易于使用等特点,它们看起来是可满足众多无线需求的最优解决方案。尽管很多情况下的确如此,但在现实中,与所有元器件一样,芯片天线也有自己的短板。在此案例中,它们的典型效率相对较低,仅为 40% 至 50%,而且容易受周边的固定和变化条件影响,包括 PC 板布局、附近的元器件和用户等。
芯片天线的替代产品是贴片天线(图 4)。尽管它的尺寸比芯片设计要大,但相当扁平,因此往往能够沿产品外壳的内侧放置,远离元器件和其他辐射模式失真源。