在工程技术领域中振动现象比比皆是,但在很多情况下振动是有害的,例如:振动降低加工精度和光洁度,加剧结构件的疲劳和磨损,在车辆和航空领域中机体及结构件的振动不但会影响驾驶员的操作和舒适度,严重情况下还会引起机体、结构件的断裂甚至解体。
MEMS加速度计终于达到了能够测量广泛机器平台振动的阶段。其最近的能力进步,加上MEMS加速度计已有的相对于传统振动传感器的诸多优势(尺寸、重量、成本、抗冲击性、易用性),促使一类新兴的状态监控(CBM)系统开始使用MEMS加速度计。结果,许多CBM系统架构师、开发者甚至其客户首次考虑使用此类传感器。他们面临的问题常常是如何快速了解评估MEMS加速度计功能的方法,以便在其机器平台上测量最重要的振动特性。这初看起来似乎很困难,因为MEMS加速度计数据手册表述最重要性能特性的方式常常不是开发人员所熟悉的。例如,许多人熟悉用线速度(mm/s)来量化振动,但大多数MEMS加速度计数据手册是用基于重力的加速度(g)来表达其性能指标。幸运的是,有一些简单的技术可用来将加速度转换为速度,以及估计加速度计关键特性(频率响应、测量范围、噪声密度)对重要系统级标准(带宽、平坦度、峰值振动、分辨率)的影响。
基本振动特性
先从惯性运动角度考察线性振动。在此背景下,振动是平均位移为零的机械振荡。对于那些不希望其机器穿越整个车间的人来说,零平均位移非常重要!振动检测节点中核心传感器的价值与它反映机器振动最重要特性的能力高低直接相关。要评估特定MEMS加速度计在这方面的能力,首先必须从惯性运动角度对振动有一个基本了解。图1是振动情况的物理示意图,灰色部分表示中点,蓝色部分表示一个方向的峰值位移,红色部分表示另一方向的峰值位移。等式1提供了一个描述矩形物体瞬时加速度的数学模型,其振动频率为(fV),幅度为Arms。
在大部分CBM应用中,机器平台的振动常常有比等式1所示模型更复杂的频谱特征,但此模型为学习发现之旅提供了一个很好的出发点,因为它给出了CBM系统常常会跟踪的两个常见振动特性:幅度和频率。此方法对关键特性到线性速度项的转换也很有用(稍后将有更多说明)。图2提供了两类不同振动模式的频谱视图。第一类(参见图2中的蓝线)在其频率范围(f1到f6)内具有恒定幅度。第二类(参见图2中的红线)在四个不同频率处出现了峰值幅度:f2, f3, f4, 和 f5.