示波器使用者经常需要执行浮动点测量。在这种测量中,任何测量点都不能潜在接地。在执行标准示波器测量时,探头连接到讯号点,探针接地引线连接到电路接地,此时,示波器实际测量的是测试点和接地之间的讯号差。
大多数示波器都将其讯号接地终端(或BNC介面的外壳)连接至防护接地系统。此举可使示波器上的所有讯号均有一个共同的连接点。基本上,所有示波器测量都是相对于「接地」来说的。
本质上,将接地连接器连接到任何一个浮动点都可使探测点接地,这常常造成尖峰或电路故障。那么应如何应对这种浮动点测量问题呢,目前执行浮动点测量有一个很流行,但却不太可取的解决方案,那就是AB技术,它使用两个单端探头和示波器的运算函数来执行浮动点测量。
秘诀6:共模抑制可能会影响测量品质
探测时最易产生误解的问题之一,是共模抑制可能会影响测量品质。无论是单端探头还是差动探头,将两个探针均连接到待测物的接地,然后观察萤幕上是否有任何讯号显示都是值得的。
如有讯号显示,该讯号显示的就是由于缺少共模抑制而引起的讯号受影响程度。测量由源头而非讯号造成的共模杂讯电流,可从待测物的接地流经探头接地,直至探头电缆遮罩。共模噪音源可能在待测物内部,也可能在其外部,例如电源线杂讯、EMI或ESD电流。单端探头的长接地引线可能会使该问题变得非常明显。单端探头常常会遭到缺少共模抑制的影响。差动主动探头则可提供更高的共模抑制比,通常可高达80dB(10000:1)。
秘诀7:检查探头耦合
在将探头连接至讯号时,用手抓住探头电缆并绕圈移动。如果萤幕上的波形发生严重改变,那就说明能量就已耦合到探头遮罩,产生了这个改变。透过使用探头电缆上的磁芯来降低电缆遮罩的共模杂讯电流,可能有助于提高探测精准度。探头电缆上的磁芯会生成一系列的阻抗与导体中的电阻并联。增加探头电缆的磁芯对讯号几乎没什么影响,因为讯号通过中心导体的核心并沿着遮罩的核心返回,致使没有净讯号电流经过核心。
因此,电缆磁芯的位置非常重要。为方便起见,可尝试着将磁芯安装在示波器一端。这将使探头变得更轻、更易於操作。不过,在将磁芯安装到电缆的探头介面端时,磁芯的有效性将会大大降低。减少单端探头接地引线的长度将会有 一定的帮助作用,转而采用差动探头是最有效的措施。很多用户都不能理解探头电缆环境的改变会造成测量结果的改变,尤其是在执行高频测量时,它会造成测量可重复性和测量品质的下降。
秘诀8:阻尼谐振
探头性能受到探头连接的高度影响。由于设计中讯号速度的提升,因此在连接示波器探头时可能会发现更多过冲、振荡和其他扰动。探头会在与元件的连接位置形成一个谐振电路。如果谐振位于示波器探头频宽内,确定测量扰动源于电路或是探头将变得十分困难。