仪器仪表商情网讯:工业技术仪器分析方法与分析仪器主要特点及发展现状综述(农业部农垦乳品质量监督检验测试中心黑龙江哈尔滨)4个数量级,在20世纪6080年代,平均每10年下降2个数量级,发展速度非常快。不同类型的分析仪器基于不同的物理、化学原理,有着不同的仪器结构、性能、特点及应用领域。
分析仪器的发展历史与分析化学的发展密切相关,21世纪将进一步迈进倍息智能化和仿生化。21世纪分析化学的发展方向是向高灵敏度、高选择性(复杂体系)、快速、自动、简便、经济。
1原子发射光谱分析法
21世纪新兴的原子光谱分析光源是等离子体光源,分为直流等离子体(DCP)、高频电感耦合等离子体(ICP)和微波等离子体(MP)。直流等离子体是最早用于原子光谱分析的一种等离子体光源,功率较ICP低,雾化器不易堵塞,总氩气的用量只及ICP耗气量的一半,无高频辐射,检出限与ICP相近或捎差;精密度不如ICP好;线性范围比ICP窄;基体效应比ICP严重;电极易污染。ICP具有优良的分析特性:被测元素能有效的进行原子化和消除化学干扰;工作曲线有较竞的线性范围,达46个数量级;倍比高;可快速进行多元素的同时测定。微波等离子体包括电容耦合微波等离子体(CMP)和诱导微波等离子体(MIP),常用微波频率为2450MHZ,主要优点是激发能力强,以Ha为工作气体时,可以测定包括卤素在内的几乎所有元素,有很好的检出限。
2分子光谱分析法
2.1紫外-可见分光光度法除常见的分光光度法外,又发展了多种多样的分光光度测量技术,如双波长分光光度法,可以有效地消除复杂试样的背景吸收、散射、浑浊对测定的影响,很适合于生物样品的分析;胶束增溶分光光度法可以提高测定选择性和灵敏度,摩尔吸收系数一般可达106L/(nolcr);导数分光光度法提高了对重叠、平坦谱带的分辨率与测定灵敏度;示差分光光度法提高了测定很稀或很浓溶液吸光度的精度。
2.2分子荧光和磷光光谱分子发射光谱法包括分子光致发光(如分子荧光和分子磷光)分析法与非光致发光(如化学发光和生物发光)分析法。
在荧光光度计上,配置磷光附件,或利用时间分辨技术可以进行磷光测定。
分子荧光和分子磷光可用于研究物质的电子状态、发光体的分子取向、发光过程动力学等。通过直接测定含量发光物质,能测定的元素达60多种。通过化学反应,将不发荧光或荧光量子产量很低的物质转变为适合于测定的荧光物质在环境检测、生物医学、临床化学、DNA测序、基因分析、跟踪化学等方面都有广泛的应用。
2.4化学发光分析法化学发光分析法是分子发光法的一种,大部分有机生色基团的激发能约为50102kcl/nol,相应于280580nm的光谱区,正处于大多数氧化还原反应的能量区,故化学发光反应大多为氧化还原反应。如卵磷脂等不饱和脂肪酸组成的脂质体,通过不饱和脂肪酸的自氧化,使脂质体膜产生超微弱发光。
化学发光分析法的主要特点是灵敏度高,检出限达到10-11nol/L的生物样品,重现性好,线性范围竞,仪器比较简单,操作方便。
化学发光现象在分析化学、生物化学、环境科学中有着广泛的应用。
3X射线分析