视觉传感器
ADAS应用摄像头作为主要传感器是因为摄像头分辨率进高于其他传感器,可以获取足够多的环境细节,帮助车辆进行环境认知,车载摄像头可以描绘物体的外观和形状、读取标志等,这些功能其他传感器无法做到。从降低成本的角度看摄像头是识别用传感器的有力候补之一,在一切清晰的情况下当然摄像头是最好的选择,但是受环境因素以及外部因素影响较大,比如隧道中光线不足,天气因素导致的视线缩小等。
采集图像信息的重要工具,部分类似路标识别、车道线感应等功能智能由摄像头实现。目前摄像头的应用主要有:单目摄像头、后视摄像头、立体摄像头或称双目摄像头、环视摄像头,按照2015年全球超过8000万辆新增车辆与单车6-8颗摄像头需求,未来总体需求有望超6亿颗,对应千亿市场空间。
视觉算法在ADAS技术路线中必不可少,毫米波雷达等主动式传感器对算法依赖程度较低,算法较为简单,摄像头等被动式传感器对算法依赖程度较高,一般由第三方企业单独提供。比如视觉算法企业Mobileye。
此前,Tesla和Mobileye终止合作的事沸沸扬扬,Mobileye提供标准的传感器安装方式+地图数据云服务+软件体系平台构建,但是Tesla是想通过在线收集数据的众包模式优化自动驾驶体验,EyeQ3芯片限制了Tesla建立自己的地图,所以Tesla未来要自己研发图像算法以及图像处理芯片。
不过Mobileye还是凭几款产品占领了90%的市场份额,这家以色列的企业在当地的江湖地位相当于BAT。算法和硬件是 ADAS 系统的核心,也是 Mobileye 的核心竞争力所在。Mobileye站在ADAS的顶端,甩出竞争对手好几条街,ADAS和传统车载视觉产品对软件技术、硬件要求不同,传统车载电子公司要切入ADAS市场并不容易。国内团队如从零开始至少需要3、4年才可能完成初步的技术积累。
当然为了提高环境感知的准确度,通常需要多种传感器的组合,最终提供一个稳定耐用的解决方案。当下比较典型的就是毫米波雷达、激光雷达和车载摄像头,其他的超声波技术和红外线技术以及这些技术的算法融合都将让传感器产业带来巨大的市场。不过毋庸置疑,在汽车实现完全智能化的这几年中,传感器产业链应该是最先获得收益的。