图1 SDS3000X示波器幅频特性曲线
四,ADC
数字示波器的本质是将模拟信号采样为一个一个的离散点。连续的模拟信号在转换为数字信号的离散化过程中 ,由于没有无限数量的离散化的数字电平来重组连续的模拟信号,实际的模拟电压值与对应的数字化电平值之间总会有偏差,这个偏差值叫量化误差。
而模数转化器(ADC)的位数则决定了示波器的最小量化电平,也即确定了数字示波器的分辨率。 ADC的位数越高,则分辨率越高。8位的ADC代表了28=256个量化级别,10位的ADC则代表了210=1024个量化级别。12位的ADC代表了212=4096个量化级别。ADC的位数越高,则意味着量化误差则越小,越有利于信号完整性测量。
除此之外,在我们只能选择既定的ADC位数的示波器之后。要想获得最佳的分辨率,要尽量让波形占满栅格,才能充分利用ADC的范围。如果只让波形占1/2栅格,则测量精度会下降到7-bit。因此合理地选择选择垂直缩放的设置,能获得更加精确的测量结果。
如下图所示为分别让信号占据满栅格,1/2栅格,1/4栅格….的情况,可以看到,测量的结果出入很大。
图2 不同情况下的测量结果
五,ENOB
ENOB(Effective number of bits)是衡量示波器动态性能的一个指标。一些示波器厂商会给出ADC的ENOB值,从某种程度上来讲,8位的ADC的确能够提供8位的精度和分辨率,这只是针对DC信号或者一些低速信号而言。随着信号速度的提高,动态数字化性能会显著下降。当达到某一特定临界值,8位的ADC可能降到6位或者4位或者更低的有效位数。
数字转化器性能的下降主要表现为信号上的噪声水平增加。此处的噪声水平增加主要是指输入信号和数字化输出中叠加的随机误差。我们可以用信噪比(SNR)来衡量此系统的好坏。
SNR=PsignalPnoise
ENOB=(SNR-1.76)/6.02
当然,对于示波器而言,单纯地讲ADC的ENOB是没有意义的,评估整个示波器系统的ENOB才具有实际意义。例如一个ADC具有非常优秀的ENOB,但若是前端噪声较大,则会影响整个系统的ENOB.
在鼎阳科技SDS2000X示波器中,提供了增强分辨率模式(ERES采集模式),通过数字滤波的方式降低噪声的带宽,能有效提高信噪比,最高可等效增强3 Bit ENOB,等效提高了示波器的垂直分辨率,且无须依赖于信号的周期性和触发点的稳定。这个模式有利于于信号完整性测量。
图3 SDS2000X增强分辨率模式
我们在判定整个系统的ENOB是否会影响信号的测量以及影响信号完整性时,一定要留意自己需要测量的是什么信号。例如高速串行信号在一些频点上具有谐波,这些谐波可以通过示波器系统而不受ENOB降低的影响。
六,噪声
在示波器不外接任何信号的前提下,我们依然可以在示波器的显示屏上观察到噪声信号,我们称这个信号为示波器的底噪。
示波器的噪声可能有很多来源,包括示波器的模拟前端,模数转化器,探头甚至是连接测量电路的电缆。有利于信号完整性测量的示波器应该具有较小的噪声。
我们在测试仪器噪声的时候,还要注意影响噪音测试结果的因素很多,比如带宽、采样率、通道垂直分辨率、水平时基和通道耦合方式等。总体来说,业界对此的共识如下:
l带宽越高,噪声越大,因为带宽越高采集到的信号谐波分量越丰富。
水平时基分辨率越低,噪声越大,即时基格度越粗,噪声显示越大。