我们经常听到身边的硬件工程师们提到关于信号完整性的话题。那么信号完整性具体是指什么呢?
信号完整性(Signal Integrity:简称SI),指信号线上的信号质量,是信号在电路中能以正确时序和电压做出响应的能力。当电路中信号能以要求的时序、持续时间和电压幅度到达接收端时,该电路就有很好的信号完整性。信号完整性问题包括误触发、阻尼振荡、过冲、欠冲等,会造成时钟间歇振荡和数据出错。
设计环节中,信号完整性是必不可少的考虑因素,当然,在信号测试和调试环节,我们也应对信号完整性问题引起重视,否则会引起测量结果误差,影响工程师判断,调试和改进电路的方向。
在基础的电子信号测量中,我们通常会选用示波器来对信号进行测量。因此,如何选择一款有利于信号完整性测量的示波器尤为重要。(文中主要讨论的为数字示波器)接下来我们主要从几个大方向介绍了哪些因素会影响信号完整性的测量。
一,带宽
带宽是我们对于示波器最直接认知的一个指标,他指的是当频率提高到某个值,输入信号幅值刚好被衰减3dB 时所对应的频率点。对于信号完整性测量来说,带宽越高越好。这句话从某种意义上来讲是正确的。
我们知道,任何信号都可以分解成无数次谐波的叠加。理论上来说,带宽覆盖被测信号能量的99.9%,测量的误差可以小于3%。根据我们一贯的经验,带宽的要求是被测信号的5倍。但是有这样一种信号,他的基频很低,但是却有快速的上升时间,很有可能会引起振铃现象,这意味着高次谐波能量占的比重大。这个时候,5倍法不再适用,并且我们无法得知,哪个频率点我们刚好能覆盖99.9%的能量。如果选择的带宽较低,则意味着这些高频分量会被漏掉,我们没法准确地在示波器上重建信号。
所以,我们在考虑如何选择示波器时,不仅要考虑带宽的影响,同时也需要考虑到上升时间的影响。这两者都是影响信号完整性的重要因素。
二,上升时间
事实上,上升时间并不仅仅指前文我们提到的信号的上升时间,对于示波器来讲,也是具有上升时间这个指标的。
我们为什么把上升时间拿到和带宽同等的高度来分析它?试想,两个具备相同带宽性能的示波器却具有不同的上升时间。那么对于我们测量信号而言,选择哪一个才能更加准确地测量信号?尤其是在测量一些快沿和高速串行信号等复杂信号时。
首先我们先明确示波器的上升时间指的是什么。理论上来讲,他是示波器放大器的阶跃响应,反映的是示波器前置放大器的瞬态响应能力。基于RC模型的高斯响应我们可以推导出:
上升时间=0.35/带宽
事实上,实际示波器带宽和上升时间的关系可能是0.35-0.5.这取决于示波器频响曲线的形状,有些示波器使用的是高斯型,有些是四阶贝塞尔型,有些是升余弦型。
但在实际测量中,示波器配合探头测量信号,这样,示波器和探头就组成了一个系统,我们可以得到以下的结论:
Rise_Time Measure2 = Rise_Time scope2+Rise_Time Probe2+Rise_Time Signal2
示波器和探头的上升时间越小,越有利于真实地重建信号,对信号测量的误差影响越小。
这意味着就算是相同的带宽,示波器测量信号完整性的能力还可以通过示波器的上升时间来加以区分。
示波器真实的上升时间无法通过带宽来进行计算, 最可靠的方法只能是通过一个理想的阶跃信号去测量。
三,频率响应
除了考虑上述带宽和上升时间以外,同时我们也应考虑在带宽内,是否具有平坦的响应。不平坦的带内响应,很有可能会导致信号的失真。所以,我们在示波器具备相同带宽的同时,我们也可以要求示波器厂商提供示波器的频响图,以便考察。如图为鼎阳SDS3000X示波器的幅频特性曲线,可以看出,4个通道在带内的曲线都很一致且平滑。