当前位置: 首页 » 技术方案 » 解决方案 » 通信 » 正文

X和Ku波段小尺寸无线电设计


时间:2017-12-19 作者:仪商网
分享到:



图10.无滤波的输出杂散


像对待接收通道一样,发射侧也可以生成混频器图表。示例如图10所示。在此图中,最大杂散是镜像和LO频率,利用混频器之后的带通滤波器可将其降到所需水平。在FDD系统中,杂散输出可能会使邻近接收机降敏,带内杂散会带来问题,这种情况下IF调谐的灵活性便很有用。在图10所示例子中,如果使用5.1 GHz的静态IF,发射机输出端会存在一个接近15.2 GHz的交越杂散。通过将14 GHz调谐频率时的IF调整到4.3 GHz,便可避开该交越杂散,如图11所示。


图11.静态IF引起交越杂散(上),利用IF调谐避开交越杂散(下)

设计示例——宽带FDD系统

为了展示这种架构能够实现的性能,我们利用ADI公司成品器件构建了一个接收机和发射机FDD系统原型,其接收频段的工作频率范围配置为12 GHz至16 GHz,发射频率的工作频率范围为8 GHz至12 GHz。使用5.1 GHz的IF来收集性能数据。接收通道的LO范围设置为17.1 GHz至21.1 GHz,发射通道的LO范围设置为13.1 GHz至17.1 GHz。原型的功能框图如图12所示。在该图中,X和Ku变频器板显示在左侧,AD9371评估板显示在右侧。


图12.X和Ku波段Rx Tx FDD原型系统功能框图


增益、噪声系数和IIP3数据在接收下变频器上收集,显示于图13(上)中。整体而言,增益约为20 dB,NF约为6 dB,IIP3约为–2 dBm。利用均衡器可实现额外的增益调整,或者利用AD9371中的可变衰减器执行增益校准。

同时也测量了发射上变频器,并记录其增益、P1dB和OIP3。此数据与频率的关系显示于图13(下)。增益约为27 dB,P1 dB约为22 dBm,OIP3约为32 dBm。

图13.Ku波段Rx数据(上),X波段Tx数据(下)


当此板与集成收发器一起使用时,接收和发射的总体特性如表3所示。


表3.系统总体性能表



总的来说,接收机性能与超外差架构相当,而功耗大大降低。等效超外差设计的接收机链功耗会高于5 W。此外,原型板的建造并未以缩小尺寸为优先目标。利用适当的PCB布局技巧,并将AD9371集成到与下变频器相同的PCB上,采用这种架构的解决方案总尺寸可缩小到仅4到6平方英寸,显著小于需要近8到10平方英寸的等效超外差解决方案。此外,利用多芯片模块(MCM)或系统化封装(SiP)等技术可进一步缩小尺寸。这些先进技术可将尺寸缩小到2至3平方英寸。

结语

本文介绍了一种切实可行的架构——高中频架构,它可替代传统方法,大幅改进SWaP。文中简要说明了超外差架构以及接收机设计的重要规格。然后介绍高中频架构,并阐释其在滤波要求和集成度(可减少器件总数)方面的优势。我们详细说明了如何制定频率规划,以及如何利用可调谐IF来避开接收机上的干扰信号。在发射方面,其目标是降低输出杂散,我们提出了一种避开带内杂散的办法,以及预测所有可能存在的输出杂散产物的方法。

这种架构的实现得益于近年来集成式直接变频接收机的迅猛发展。随着AD9371的诞生,通过高级校准和高集成度可实现更高的性能。这种架构在未来的低SWaP市场会变得特别重要。


关键词:RF系统 无线电 卫星通信 高中频架构    浏览量:462

声明:凡本网注明"来源:仪商网"的所有作品,版权均属于仪商网,未经本网授权不得转载、摘编使用。
经本网授权使用,并注明"来源:仪商网"。违反上述声明者,本网将追究其相关法律责任。
本网转载并注明自其它来源的作品,归原版权所有人所有。目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。如有作品的内容、版权以及其它问题的,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
本网转载自其它媒体或授权刊载,如有作品内容、版权以及其它问题的,请联系我们。相关合作、投稿、转载授权等事宜,请联系本网。
QQ:2268148259、3050252122。


让制造业不缺测试测量工程师

最新发布
行业动态
技术方案
国际资讯
仪商专题
按分类浏览
Copyright © 2023- 861718.com All rights reserved 版权所有 ©广州德禄讯信息科技有限公司
本站转载或引用文章涉及版权问题请与我们联系。电话:020-34224268 传真: 020-34113782

粤公网安备 44010502000033号

粤ICP备16022018号-4