图2 SIW的结构与场分布
几种PCB平面传输线技术有各自的优点和缺点。例如SIW传输线,它具有如可应用于超高频段、辐射低、损耗低等优点,但由于其设计难度大、加工困难、不易与其他元件集成等缺点,使其相对于其他几种传输线来说并不被广泛应用。
2. 辐射损耗
对于PCB传输线电路,插入损耗主要包括介质损耗、导体损耗、辐射损耗和泄露损耗几个部分,是各种损耗成分的总和。泄漏损耗通常是由于信号与地之间形成了泄漏电流而导致的能量的损失。由于高频PCB材料具有较大的体电阻,泄露损耗很小,一般可以忽略。电路的导体损耗是传输线上信号路径的能量损失,是由导体自身的阻抗引起。介质损耗则是由构成电路的电路材料的耗散因子所决定,选择相对较小的损耗因子材料有利于电路总的插入损耗的减小。
对于中低频段电路,电路的插入损耗主要由导体损耗和介质损耗有决定。而随着电路所应用的频率的不断升高,信号波长变短,特别是在毫米波频段,传输线的非闭合结构,以及传输线的横截面积与线宽等保持不变而使电路的辐射损耗就变得不可忽略。微带传输线尽管相对于上述其他三种在毫米波频段更容易产生辐射损耗和杂散模,但由于微带线具有的加工容易、设计简单、物理尺寸小、易于集成等诸多优点使得其仍然用于毫米波电路。那么在毫米波频段使用微带线时需要如何进行优化设计呢?
下面以Rogers公司的MWI软件来模拟计算同种材料不同厚度的50Ω微带线各部分损耗情况,来讨论毫米波频段下微带线损耗的优化设计,如图3所示。分别选取了10mil和30mil的两种厚度设计的50Ω微带线。从图中可以看到,当频率较低时,电路的辐射损耗几乎可以忽略不计,这时电路总的损耗主要由导体损耗和介质损耗所决定,基于10mil厚度的电路因导体线路窄具有高的导体损耗而导致总的损耗偏高。当频率升高时,相比10mil厚度的电路,可以看到基于30mil厚度的电路的辐射损耗显著且迅速增加,从而导致电路总的损耗值较大。这一变化说明对于毫米波电路应用,较厚的微带线路的辐射损耗占电路总损耗的较大部分。选择厚度较薄的电路材料,可以降低辐射损耗从而减小电路的插损。
图3 同种材料不同厚度下微带线的损耗
电路材料厚度的降低对辐射损耗的减小,也可以看作是减小了电路中寄生杂散模式的产生。电路中所传输的信号往往包含多个频率分量。由微波电路理论知道,当电路的厚度或宽度大于传输信号的1/8波长时,电路将产生杂散模。如图4所示,当使用的电路材料较厚,设计同一阻抗如50Ω线路也会较宽,如果这一厚度或宽度与所传输信号中的波长相比拟时,电路的性能就将被恶化。以16.6mil RO4350BTM材料设计的50Ω微带线为例,此时微带线的宽度是36mil。这一宽度对应的1/4波长的频率是46.5GHz,而对应的1/8波长的频率是23.8GHz。因此这一电路在高频段如46.5GHz时性能较差,而在小于23.8GHz时的波动较小、性能较好。