图11. 无电弧频谱
频率较高时,虽然电弧以较低的幅度存在,但系统的开关元件也以较低的幅度存在,因此电弧检测更容易。在较高频率区域,较低分辨率的ADC可能就足够了。
还有一条有价值的信息,那就是在相同条件下,无论产生电弧的电流/电压为多大,图11中的频谱变化极小。这表明电弧具有一致性,因此系统中可以检测到。
结语
必须根据下列要点解决直流电弧问题:
☑ 对象是可能产生电弧的系统和需要电弧检测的电路,确保能检测到所有电弧;
☑ 然后测量电弧的强度或幅度。这是明确判断电弧是否产生所必需的,同时还能消除系统受到外部辐照所引起的电弧误报。因此,必须采用一种滤波机制来消除电弧误判;
☑ 确保串联和并联电弧均得到处理,完整检测可能需要(也可能不需要)多个独立电路; ☑ 确保电子电路也能自动或手动禁用光伏阵列和电网连接,以便阻止火灾扩散。
本文讨论了多项内容,总结如下:
-光伏逆变器的电弧检测是对新开发太阳能光伏逆变器的一项要求;
-起弧分析或电弧检测主要是在电流域展开;
-测试都是在直流域中展开,采用符合UL1699B指令的试验装置,它具有两个固体电极,大电流(7 A至14 A)通过其中,然后将其分开,直至电弧产生;再继续分开,直至距离足够远,电弧停止;
-最大功率点跟踪(MPPT)在电弧检测中可发挥重要作用,开发解决方案时应予以考虑;
-电弧检测可以在较低频谱(100 kHz区域)中进行分析。一种可能的电弧检测解决方案是使用100 kHz频谱的带通滤波器和 ADSP-CM40 系列内置 ADC;
-目前市场上已有 AFCI 产品,其专门设计用于检测交流电路中的电弧特征。
光伏逆变器的电弧检测必须包含一种预测电弧发生的方法,以便在持续电弧发生之前或持续电弧的寿命极早阶段提供预警,并且能关断电弧源。然后平稳地关断光伏逆变器,防止火灾和逆变器受损(如可能)。