随着制造业的发展,智能制造技术日渐成为实现制造的知识化、自动化、柔性化以实现对市场的快速响应的关键技术。
其主要应用包括基于神经网络的智能检测、故障诊断、识别、设计、优化,基于遗传算法的优化设计,基于规则、基于框架的专家系统,基于类比推理、归纳学习与基于实例推理的知识系统,基于Agent技术的分布式智能制造系统等等。
智能制造主要关注于高端装备制造,在制造过程中进行分析推理、判断、思考、决策等活动。智能制造系统从原始的能量驱动转变为信息驱动,这对于制造系统的灵活性和数字化提出了很高的要求。
在智能制造系统中,原始信息的采集是最基础的工作,原始信息推动着整个系统的决策和工作。机器视觉技术作为当前的热门技术之一,具有高度的灵活性,能适应各种生产环境,拥有强大的理论支持,在智能制造领域得到了广泛的应用。
本文针对于智能制造,介绍了机器视觉的相关关键以及其在制造过程中的相关应用,并基于此探讨机器视觉在未来先进制造、智能制造中的应用前景。
机器视觉在智能制造中的应用
机器视觉的应用优势在于无需与被测物体进行接触,因此被测物体和测量装置操作过程中都不会产生损坏,是一种相对于而言更安全可靠的检测手段。此外,测量装置的适用范围和互换性都非常的广泛,不仅仅局限于某一类物体。理论而言,机器视觉技术甚至可以用来探测人眼无法观察到的部分,例如红外线、微波、超声波等,通过传感器可以将这些信息进行捕获和处理,从而拓展了人类的视觉范围。相对机器视觉而言,人类视觉容易受到个体状态的影响,难以进行长时间的观测,在恶劣下表现不理想,因此,机器视觉技术常常用于长时间检测工作和在线处理,以及人类无法工作的极端环境下。
正是因为这些特性,机器视觉技术被广泛应用于工业生产的各个步骤。在智能制造体系中,机器视觉的应用主要可以归纳为四个方向:尺寸测量、物体定位、零件检测、图像识别。
1、 尺寸测量
随着制造工艺的不断提高,工业产品尤其是大型构件的外形设计日趋复杂。同时,由于大型构件的体积和重量限制,不便于经常移动,给传统的测量方式带来了巨大的困扰。机器视觉测量技术是一种基于光学成像、数字图像处理、计算机图形学的无接触的测量方式,拥有严密的理论基础,测量范围更广,而且相对于传统测量方式而言,拥有更高的测量精度和效率。
根据不同的光照方式和几何关系,视觉检测方法可以分为两种:被动视觉探测和主动视觉检查。被动视觉探测直接采用了原始图像,这些在工业环境中获取的原始图像并没有明显的特征信息;而主动检测方式能够主动的去产生所需的特征信息,从而避免立体特征匹配困难,所以在工业检测中应用范围更广。
主动视觉检测方式包括激光测距、云纹干涉法、简单三角形法,结构光法与时差法等方法。例如魏振忠[10]提出了一种基于结构光视觉传感器的物体测量方法,可用于提高大型工件的结构光三维视觉的检测精度。在结构光方法的测量过程中,由于靶标上的基准坐标点很难准确落在结构光平面上,导致空间坐标的准确获取难以实现。在此测量方法中,通过一种基于双重交比不变的结构光视觉传感器的标定方法,并配合相应的标定靶标,从根本上解决了此问题。
2. 物体定位
传统制造业中的焊接、搬运、装配等固定流程正在逐步被工业机器人取代,这些步骤对于工业机器人来说,只需要生成指定的程序,然后按照程序依次执行即可。在机器人的操作过程中,零件的初始状态(如位置和姿态等)与机器人的相对位置并不是固定的。这导致工件的实际摆放位置和理想加工位置存在差距,机器人难以按照原定的程序进行加工。随着机器视觉技术以及更灵活的机器手臂的出现,这个问题得到了很好的解决,为智能制造的迅速发展提供了动力。
3、零件检测