当前位置: 首页 » 技术方案 » 前沿科技 » 正文

谷歌AI帮助光学传感器更好地识别透明物体


  来源: DeepTech深科技 时间:2020-02-17 编辑:仪商WXF
分享到:



在机器人和计算机视觉领域,光学 3D 距离传感器已经得到了广泛应用,比如 RGB-D 摄像头和 LIDAR 传感器,都在 3D 环境绘制和无人驾驶等任务中扮演了重要角色。

 

尽管它们性能十分强大,兼具高敏感度、高精度和高可靠性等特质,但在识别透明物体上却不尽如人意。想要破坏这些传感器的成像效果,或者让机械手臂无从下手,只需要在它们面前放上玻璃杯一类的透明物体就可以了,因此难以在不使用其他传感器的情况下独立完成特定任务。

 

这是因为光学传感器的算法假设所有表面均是理想散射的 (Lambert),即物体会在各个方向和各个角度均匀地反射光线。在 Lambert 光照模型中,无论观察者的视角如何,其表面亮度都是相同的。

 

现实中的绝大多数物体符合这一假设,除了透明物体,因为它们的表面既折射又反射光线。这样一来,光线传播的复杂性大幅提升,表面亮度与视角无关的假设被破坏了,基于 Lambert 模型的算法也就失效了,导致传感器收集的透明物体的大多数深度数据都是噪声或者无效的。


 

图 | 透明物体在传统算法眼中是噪声(来源:谷歌 AI)

 

为了改善这一问题,让机器可以更好地感知透明表面,谷歌 AI,Synthesis AI 和哥伦比亚大学的研究人员合作开发了一种名为 ClearGrasp 的机器学习算法,能够从 RGB-D 图像中估算透明物体的准确 3D 数据。

 

根据谷歌 AI 介绍,在设计之初,ClearGrasp 算法就考虑到了兼容性。它可以与任何标准 RGB-D 相机捕捉的数据配合使用,借助神经网络和深度学习来准确地重建透明物体的景深数据。

 

图 | ClearGrasp 算法的工作原理(来源:谷歌 AI)

 

与目前所使用的技术不同,ClearGrasp 算法不依赖于对透明物体的先验知识,比如预先对透明物体进行 3D 建模,还要补充观察视角和光线数据。在神经网络的帮助下,它可以很好地泛化到从未见过的全新物体身上。

 

在测试过程中,研究人员将新算法集成到了一套现有的拾取机器人控制系统中,最终发现它对透明塑料物体的抓取成功率有了非常显著的提升,最多可以提升 6 倍。未来有望在拾取机器人和自动驾驶等领域应用。

 

透明对象的可视数据集

 

无论是什么样的深度学习模型,训练时都要依赖于大量数据,比如训练自然语言模型 BERT 需要维基百科,ClearGrasp 也不例外。然而目前广泛使用的 3D 数据集,包括 Matterport3D 和 ScanNet,都会忽略透明表面和物体,因为标记过程过于复杂和耗时。

 

这让研究人员不得不自己创建训练集和测试集,专门针对透明对象设计。

 

在训练数据集中,他们创造了 5 万多个符合真实物理原则的渲染图,每张图片最多包含 5 个透明物体,放置于平面上或者开放式容器中,视角、背景和光线各不相同。每个物体还有配套的表面法线(曲率)、分割蒙版、边缘和深度等信息,用于训练各种 2D 和 3D 物体检测任务。

 

至于测试集,研究团队选择用真实场景创建图片和数据,方便最大程度上测试算法的真实表现。这是一个十分痛苦的过程,因为对于每个场景都要在保证视角、光线和场景布置完全一致的情况下照两遍:第一遍用透明物体,第二遍用一模一样的非透明物体替换它们(必须保证位置完全一样)。

 

图 | 布置真实场景(来源:谷歌 AI)

 

最终他们得到了 286 个真实场景测试图,其中不仅包括透明物体本身,还有各种不同的背景贴图和随机不透明物体。图片中既包含训练集中存在的已知对象,也包括从未出现过的新物体。

 

在数据集的问题解决之后,下一步是思考如何收集透明物体的深度数据。

 

关键词:谷歌AI 光学传感器 识别透明物体    浏览量:745

声明:凡本网注明"来源:仪商网"的所有作品,版权均属于仪商网,未经本网授权不得转载、摘编使用。
经本网授权使用,并注明"来源:仪商网"。违反上述声明者,本网将追究其相关法律责任。
本网转载并注明自其它来源的作品,归原版权所有人所有。目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。如有作品的内容、版权以及其它问题的,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
本网转载自其它媒体或授权刊载,如有作品内容、版权以及其它问题的,请联系我们。相关合作、投稿、转载授权等事宜,请联系本网。
QQ:2268148259、3050252122。


让制造业不缺测试测量工程师

最新发布
行业动态
技术方案
国际资讯
仪商专题
按分类浏览
Copyright © 2023- 861718.com All rights reserved 版权所有 ©广州德禄讯信息科技有限公司
本站转载或引用文章涉及版权问题请与我们联系。电话:020-34224268 传真: 020-34113782

粤公网安备 44010502000033号

粤ICP备16022018号-4