脉冲调制器上升时间测试连接如图4所示,系统需要提供射频CW信号和用于控制调制器的基带脉冲信号。为了能够准确测试上升时间,推荐使用一台任意波信号发生器 (AWG) 产生基带脉冲信号,因为AWG的带宽足够大,所产生的脉冲信号上升时间远远小于脉冲调制器的上升时间。
CW信号经过脉冲调制器转换为射频脉冲信号,然后馈入示波器进行测试。在 Spectrum View 模式下,直接调出“Magnitude_vs_Time”,使用示波器的自动测量功能便可以精确测出10%~90%或者20%~80%的上升时间。
图9. 脉冲调制器上升时间测试连接示意图
(5) RF module绝对时延测试
在一些相参多通道应用场合,为了保证各通道之间的时间同步性,对通道上射频模块 / 部件的绝对时延提出了较高要求,比如功率放大器 、上下变频器、模拟IQ调制器等,因此需要对这些模块的绝对时延进行标定。
众所周知,矢量网络分析仪具有测试群时延 (Group delay) 的功能,但是群时延并不是绝对时延。只有当相频特性呈现理想线性关系时,群时延才是绝对时延。显然,这种理想器件是不存在的。而且实际测试中除了关注绝对时延,可能还会涉及到射频脉冲信号经过这类器件后的上升/下降时间等参数测试,因此,示波器是这类测试的理想选择。
绝对时延测试过程中,系统给待测件馈入一个射频脉冲信号,同时输出一路同步触发信号作为时间参考,在Spectrum View模式下调出脉冲信号的包络后,使用示波器的自动测量功能便可以确定绝对时延。对于高带宽应用场合,通道所采用的也都是宽带射频模块,为了能够测试这种场合下的参数,建议测试时也采用宽带信号,图10便采用了泰克公司的任意波信号发生器提供高带宽的线性调频脉冲信号。
图10. 射频模块绝对时延测试连接示意图
模拟IQ调制器的绝对时延测试,与上述测试方法类似,只是需要给待测件提供模拟I信号和Q信号,测试连接如图11所示。为了准确测试时延,依然采用射频脉冲信号。最简单的射频脉冲在脉内是恒定的载波,对应的基带IQ信号只有I路有信号,Q路信号为0。测试时建议采用线性调频脉冲信号,I和Q路均有信号,可以使得调制器的I和Q两个支路分别工作起来,以模拟其真实工作状态。
与功率放大器等射频模块的绝对时延测试类似,模拟IQ调制器的时延测试也需要时间基准信号,由图11中所示的任意波信号发生器提供。Spectrum View测出射频脉冲信号的包络后,使用自动测量功能便可以测出包络信号与基准信号之间的时间差,从而精确标定绝对时延,图12给出了模拟IQ调制器时延的实测结果。
图11. 模拟IQ调制器绝对时延测试连接示意图
图12. 模拟IQ调制器绝对时延实测结果