较薄的InP层降低了可见光的吸收,并使其能够传输到下面的InGaAs层。因此,在0.4 μm到1.7 μm(400 nm到1650 nm相对量子效率>70%)的宽波长范围内成像是可能的。此外,较薄的InP层提升了短波红外波长的相对量子效率,900 nm到1600 nm波长范围内,光透过InP层比率可达90%以上(图3)。
图3 随着InP厚度的减薄,较短的波长(可见光)可以穿透InGaAs层并被探测到。
这一改进使传感器可同时捕获短波红外和可见光的高光谱图像,从而大幅减少图像相机系统的运算负荷,也使整个系统的成本优于多传感器解决方案。
实现数字模拟输出
通过使用Cu-Cu杂化,InGaAs传感器也可直接输出数字信号,而无需使用数字转换电路。因此该方法在简化设计的同时,赋予短波红外相机与当前工业CMOS图像传感器相同的性能。
结论
高光谱和短波红外技术为食品和农业质量检验以及污染检测带来了巨大好处。显而易见,这些技术还可以广泛用于艺术品修复、医药以及汽车等诸多行业。
利用Cu-Cu键合取代bump连接,可以显著改善传统InGaAs传感器的限制:将像素密度提高四倍,并在单芯片上实现短波红外和可见光成像,以及实现数字输出。
图4 IMX990短波红外图像传感器,左图为陶瓷LGA封装,右图为陶瓷PGA封装
索尼于2020年5月首次推出其基于Cu-Cu键合技术的两款短波红外传感器:IMX990和IMX991。