在无线世界中,射频组件测试的需求是将产品推向市场的关键因素之一。设备越来越小,包含的组件越来越复杂。运用阻抗(或导纳)和反射/传输参数的理论知识,可以使射频设备的性能达到最佳。滤波器、谐振器等射频元件所用到的电容和电感值可以通过理论计算来获得,借助仿真软件微调元件的属性值来优化整体设计,但是最终射频元件的性能还需要通过实际测量来评估。
相比于标量网络分析仪来说,矢量网络分析仪(VNA)不仅可以测量幅度和频率等标量信息,还可以测试相位等更加全面的系统特征值。
矢量网络分析仪(VNA)是用来评估及测试射频元件性能的重要设备,其测试结果以矢量(复数)形式表征。矢量网络分析以反射[S11]和传输[S21]因子组成散射矩阵,并可以通过相位信息对线缆故障位置进行精确计算。
RIGOL的RSA5000N和RSA3000N(以下称RSAxN)系列VNA解决方案可以执行三种不同的测量:反射[S11]、传输[S21]和故障点距离[DTF]测量。通过切换测试模式,工程师可以轻松地获取被测物(DUT)的频率响应、相位、SWR(驻波比)等信息,并且可以得到依据DUT特性绘制的Smith圆图和极坐标圆图。
一、S11测量
反射测量是确定复杂系统(如无线通信系统)性能的关键,反射系数指反射波电压与入射波电压的比值。进行反射测量最优的方式之一是Smith圆图,因为它所含信息最多,比如:
• 复阻抗信息、电感/容抗匹配情况以及补偿方式
• 复反射系数
• 电容或电感的实际影响
• 频率范围的影响及频率响应
• 射频组件的Q因子
在RSAxN中,史密斯圆图可以显示阻抗或导纳圆图。图1是一个通用的Smith圆图。“通用”是指它可以用于每个系统阻抗。但最终实际复阻抗的计算须在测量完成后进行。在RSAxN中,可以通过标记和测量阻抗值来表征转换后的值。
Smith圆图和极坐标图是分析特定频段上复阻抗和反射系数的有效工具,其主要目的是做高频电路的阻抗匹配。阻抗表示电路对电信号的阻碍能力,由矢量(复数)表征:实部表示电阻值,虚部表示电抗值(包括容抗和感抗)。在Smith圆图中,上半部分表示电路偏感性,即虚部是正值;下半部分表示电路偏容性,即虚部是负值;中间的水平分界线表示电路为纯阻性,即阻抗的虚部为0,最左侧为短路点(阻抗为0),最右侧为开路点(阻抗为无穷大),正中心是阻抗匹配点,此时电路处于最佳状态。
图1: 阻抗区域的Smith圆图概述,以50 Ω为例
如下,以对50欧网络的输入端口测试为例,Smith圆图可以显示复数网络中不同的可能性。
图2:DUT中心频率测量及阻抗匹配
如图2,我们的实测结果对应Smith圆图的A点(First measurement)。对该端口先串联30欧的电阻我们可以让测试结果到达B点然后再串联27欧的感抗,即可实现在指定频点的50欧匹配C点。但现实问题是,27欧感抗对应的67pH电感值非常小,很难实现,且独立的电感元件适应频率范围也不够高,所以对于更高的频率,需要使用其他方法,如微带传输线,用短截线来补偿-j27欧(短路短截线的长度: I = 0.078λ,开路短截线的长度: I = 0.328 λ)。对于短截线,需要介电常数来评估正确的波长。
除了通过Smith圆图来直观进行阻抗匹配计算,VNA还可以在频率范围内换算成回波损耗和电压驻波比VSWR
图3:S11参数测量的四种显示方式:Smith圆图、极坐标图、对数幅度-频率、SWR
信号通过滤波器、放大器等组件传输时,都会有延时现象。如果宽带信号经过组件,不同频率信号的群时延不同,会引起信号的非线性变化,即导致信号失真,这不是我们所希望的结果。如果群时延在频率范围内是恒定的,那么所有频率分量将有相同的相位偏差,在这种情况下,理想系统将没有失真,群时延将是一个恒定值。
群时延计算如下: