和传统脉宽调制(PWM)电源转换器不同的是,谐振转换器通过频率调制来调节输出电压。因此,谐振转换器的设计方法也与PWM转换器的设计方法有所异。在各种类型的谐振转换器中,图1的LLC串联谐振转换器(LLC-SRC)格外引人瞩目,因为它有更强的输出调节功能、更小的循环电流和更低的电路成本。
Mg/Qe和Mg/fn图表中的增益曲线是由图1所示的LLC谐振槽路(它也是LLC谐振半桥转换器的线性化电路)衍生而来的。
图3提供了LLC谐振半桥转换器的简单电路参数选择过程。通过检查增益曲线上的fn_min、fn_max位置,您就能设计出在所有输入条件下开关网络上均具有ZVS的高效LLC谐振半桥变换器。
当设计LLC谐振半桥变换器时,请谨记:
任何时候,在Mg/fn图表中fn_min都需要高于增益曲线的脊线。这是为确保金属氧化物半导体场效应晶体管(MOSFET)能保持ZVS状态。LLC-SRC的效率只能在一个操作点进行优化。当fsw= fo时,串联Lr和Cr变成零阻抗状态(图4);该转换器在那个点具有最高的效率。您需要决定自己想优化的线路/负载条件,并确保您的开关频率在那样的条件下是谐振频率。
半桥LL谐振电容和谐振电感的配置
单谐振电容和分体谐振电容都存在于半桥转换器当中。对于单谐振电容配置而言,它的输入电流纹波和均方根(RMS)值较高,而且流经谐振电容的均方根流较大。这种方案需要耐高压(600~1,500V)的谐振电容。不过,这种方案也存在尺寸小、布线简单等优点。
分体谐振电容相较于单个谐振电容而言,其输入电流纹波和均方根值较小。谐振电容仅处理一半的均方根电流,且所用电容的电容量仅为单谐振电容的一半。当利用钳位二极管(D3 和D4)进行简单、廉价的过载保护时,这种方案中,谐振电容可以采用450V较低额定电压工作。顾名思义,半桥LLC转换器中包含2个电感(励磁电感Lm 和串联的谐振电感Ls)。根据谐振电感位置的不同,谐振回路也包括两种不同的配置,一种为分立解决方案,另一种为集成解决方案。这两种解决方案各有其优缺点,采用这两种方案的LLC的工作方式也有轻微差别。