测不对SiC MOSFET驱动波形六大原因
(本文转载自公众号:功率器件显微镜)
开关特性是功率半导体开关器件最重要的特性之一,由器件在开关过程中的驱动电压、端电压、端电流表示。一般在进行器件评估时可以采用双脉冲测试,而在电路设计时直接测量在运行中的变换器上的器件波形,为了得到正确的结论,获得精准的开关过程波形至关重要。
SiC MOSFET相较于Si MOS和IGBT能够显著提高变换器的效率和功率密度,同时还能够降低系统成本,受到广大电源工程师的青睐,越来越多的功率变换器采用基于SiC MOSFET的方案。SiC MOSFET与Si开关器件的一个重要区别是它们的栅极耐压能力不同,Si开关器件栅极耐压能力一般都能够达到±30V,而SiC MOSFET栅极正压耐压能力一般在+20V至+25V,负压耐压能力一般仅有-3V至-10V。同时,SiC MOSFET开关速度快,开关过程中栅极电压更容易发生震荡,如果震荡超过其栅极耐压能力,则有可能导致器件栅极可靠性退化或直接损坏。
很多电源工程师刚刚接触SiC MOSFET不久,往往会在驱动电压测量上遇到问题,即测得的驱动电压震荡幅值较大、存在与理论不相符的尖峰,导致搞不清楚是器件的问题还是电路设计的问题,进而耽误开发进度。
接下来我们将向您介绍六种由于测试问题而导致的驱动电压离谱的原因。
原因1:高压差分探头衰减倍数过大
高压差分探头的为差分输入且输入阻抗高,在电源开发过程中一般都会选择它来测量驱动波形。
有时在使用高压差分探头时获得的驱动波形显得非常粗,这往往是由于高压差分探头的衰减倍数过大导致的。衰减倍数大,高压差分探头的量程就大,使得分辨率大幅下降,同时示波器在还原信号时还会将噪声放大。此时就需要选择衰减倍数较小的高压差分探头或选择高压差分探头衰减比较小的档位。我们使用下图中的高压差分探头测量驱动电压,衰减倍数分别选择50倍和500倍,在下图中可以明显到500倍衰减倍数下驱动波形非常粗。
50倍与500倍衰减波形对比
示意图为泰克高压差分探头
原因2:高压差分探头测量线未双绞
高压差分探头一般用于测量高压信号,为了使用安全及方便接线,其前端是两根接近20cm的测量线。在进行测量时,可以将两根测量线看作为一个天线,会接收外界的磁场信号。而SiC MOSFET的开关速度快,开关过程电流变化速率大,其产生的磁场穿过由高压差分探头测量线形成的天线时就会影响测量结果。
为了降低这一影响,可以将高压差分探头的两根测量线进行双绞,尽量减小它们围成的面积。从下图中可以看到,在将测量线未双绞进行双绞后,驱动电压波形的震荡幅度明显降低了。
是否双绞的波形对比
原因3:无源探头未进行阻抗匹配
阻抗匹配与未阻抗匹配波形对比
无源探头衰减倍数小、带宽高,往往可以在双脉冲测试时用来获得更为精准的驱动电压波形。无源探头的等效电路如下所示,只有当其与示波器达到阻抗匹配时才能获得正确的波形。一般情况下,我们可以通过旋转无源探头尾部的旋钮调节电容来进行阻抗匹配调节,此外还有部分探头能够在示波器上完成自动补偿。