从分类上来说,所有的光电(O/E),电光(E/O),光光(O/O),电电(E/E)器件都是光电元器件分析仪的被测对象。如图5所示,光电二极管,调制器,激光器,或相干通信中的Mach-Zehnder调制器和ICR接收机。光电元器件分析仪都能将其器件性能准确的测量出来。
图5.1典型电光器件
图5.2典型光电器件
测量参数的概念也很简单,它测量了各种光电器件的小信号线性传输和反射特性。传输特性和反射特性的定义如下图6所示。
传输特性就是对比进入被测器件的信号和经过被测器件之后的信号,以此可以得到被测器件对信号的增益或是衰减或是叫做转换效率。
反射特性同理,对比进入被测器件的信号和从被测器件反射回来的信号,以此可以得到被测器件对信号的反射特性。
图6传输特性与反射特性定义
OCA系列光电元器件分析仪(Optical Component Analyzer)是基于“微波光子技术”,利用光电测量扩展座,搭配上海普尚电子(Prosund)SP800B/SP800P/SP800S等系列矢量网络分析仪协同工作,具备电-光、光-电和光-光3种元器件频谱响应参数的测量功能。
测量器件的传输特性:
精确的电(电信号发生器)或光(激光器)源用于激励被测组件后,由经过校准的光或电接收机来测量经过被测器件传输之后的信号,以此来测量器件的传输特性。
测量器件的反射特性:
如果是测量器件的反射特性,则是接收到达被测器件之后反射回来的信号进行测量。
由于传输性能和反射性能需要在不同频率下进行表征,因此调制频率通常会扫过目标带宽。微波网络分析仪内置信号源以及接收机,信号源负责输出电信号,接收机负责测量由被测器件输入的电信号,所以图中微波网络分析仪负责发射或接收电信号。
早在上世纪80年代,光通信刚刚兴起的时候,美国、英国和日本等发达国家就已经进行了相干光通信的理论研究和实验,并取得了不错的成果。
例如,美国AT&T及Bell公司,于1989和1990年在宾州的罗灵克里克地面站与森伯里枢纽站间,先后进行了1.3μm和1.55μm波长的1.7Gbps FSK现场无中继相干传输实验,传输距离达到35公里。