在室温时,噪声功率谱密度PNAD = -174dBm/Hz。
因而有以下的公式:
在公式中,PNOUT是已测的总共输出噪声功率,-174dBm/Hz是290°K时环境噪声的功率谱密度。BW是感兴趣的频率带宽。增益是系统的增益。NF是DUT的噪声系数。公式中的每个变量均为对数。为简化公式,我们可以直接测量输出噪声功率谱密度(dBm/Hz),这时公式变为:
为了使用增益法测量噪声系数,DUT的增益需要预先确定的。DUT的输入需要端接特性阻抗负载(射频应用为50Ω,视频/电缆应用为75Ω)。输出噪声功率谱密度可使用频谱分析仪测量。
增益法测量的框图见下图所示。
图3.噪声系数增益法测量框图
如图所示,在指定的LNA增益设置和VAGC下测量得到的DUT增益为80dB。接着,如上图设置仪器,射频输入用50Ω负载端接。在频谱仪上读出输出噪声功率谱密度为-90dBm/Hz。为获得稳定和准确的噪声密度读数,选择最优的RBW (分析带宽)与VBW (视频带宽)为RBW/VBW = 0.3。计算得到的NF为:-90dBm/Hz + 174dBm/Hz - 80dB = 4.0dB
只要频谱分析仪允许,增益法可适用于任何频率范围内。最大的限制来自于频谱分析仪的噪声基底。在公式中可以看到,当噪声系数较低(小于10dB)时,(POUTD -增益)接近于-170dBm/Hz,通常LNA的增益约为20dB。这样我们需要测量-150dBm/Hz的噪声功率谱密度,这个值低于大多数频谱仪的噪声基底。在我们的例子中,系统增益非常高,因而大多数频谱仪均可准确测量噪声系数。类似地,如果DUT的噪声系数非常高(比如高于30dB),这个方法也非常准确。
方法三、Y因子法
Y因子法是另外一种常用的测量噪声系数的方法。为了使用Y因子法,需要ENR (超噪比)源。这和前面噪声系数测试仪部分提到的噪声源是同一个东西。
图4.噪声系数Y因子法测量框图
ENR噪声源通常需要高电压的DC电源输入,这些ENR噪声源能够工作在非常宽的频段,本身在特定的频率上具有标准的噪声系数。而标定频率外的噪声系数可通过外推法得到。
开启或者关闭噪声源(通过开关DC电压),工程师可使用频谱分析仪测量输出噪声功率谱密度的变化。计算噪声系数的公式为:
在这个式子中,ENR通常会列出。Y是输出噪声功率谱密度在噪声源开启和关闭时的差值。
测量案例
在实际测量中,我们最常见的就是频谱分析仪加装噪声系数测量选件之后,进行噪声系数的测量。如下图,首先需要做校准;然后串联对应的DUT,进行实际的噪声系数测量。
图5.频谱仪测量放大器噪声系数示意图:校准(上);测量(下)
我们选用的噪声源是NC346Ka,DUT是14GHz的Mini公司的ZX60-14012L-S+放大器;测试结果如下图。整体测量结果与产品技术规格书保持了一致。
图6.普尚SP900P的噪声系数测量图
普尚SP900P频谱与信号分析仪可使用多点触控用户界面操作执行发射器一键式噪声系数和增益测量。测量包括噪声系数、增益、Y因数、有效温度和热态/冷态功率密度。使用测量不确定度计算器可估算总体噪声系数。
总结