共模抑制(CMR)测量共模信号存在时所引起的差模信号。许多ADC采用差分输入来实现对共模信号的高抗扰度,因为差分输入结构本身能抑制偶数阶失真产物。
与PSR一样,电源纹波、接地层上产生的高功率信号、混频器和RF滤波器的RF泄漏以及能够产生高电场和磁场的应用会引入共模信号,虽然许多转换器未规定CMR,但他们通常具有50至80dB的CMR。
时钟相关技术指标,尽管比较重要,但并不总是作出规定,而且可能难以确定。
图2.输入时钟与采样噪声的关系
时钟压摆率是实现额定性能所需的最小压摆率。多数转换器在时钟缓冲器上有足够的增益,以确保采样时刻界定明确,但如果压摆率过低使得采样时刻很不确定,将产生过量噪声。如果规定最小输入压摆率,用户应满足该要求,以确保额定噪声性能。
孔径抖动是ADC的内部时钟不确定性。ADC的噪声性能受内部和外部时钟抖动限制。
在典型的数据手册中,孔径抖动仅限转换器。外部孔径抖动以均方根方式与内部孔径抖动相加。对于低频应用,抖动可能并不重要,但随着模拟频率的增加,由抖动引起的噪声问题变得越来越明显。如果不使用充足的时钟,性能将比预期要差。
除由于时钟抖动而增加的噪声以外,时钟信号中与时钟不存在谐波关系的谱线也将显现为数字化输出的失真。因此,时钟信号应具有尽可能高的频谱纯度。
孔径延迟是采样信号的应用与实际进行输入信号采样的时刻之间的时间延迟。此时间通常为纳秒或更小,可能为正、为负或甚至为零。除非知道精确的采样时刻非常重要,否则孔径延迟并不重要。
转换时间和转换延迟是两个密切相关的技术指标。转换时间一般适用于逐次逼近型转换器(SAR),这类转换器使用高时钟速率处理输入信号,输入信号出现在输出上的时间明显晚于转换命令,但早于下一个转换命令。转换命令与转换完成之间的时间称为转换时间。