“所有芯片设计公司都希望通过更充分的验证,降低投片风险与流片成本。我们希望通过EDA工具和方法学的全面进阶,让系统工程师和软件工程师都参与到芯片设计中来,解决设计难、人才少、设计周期长、设计成本高企的问题,用智能化的工具和服务化的平台缩短从芯片需求到系统应用创新的周期,降低复杂芯片的设计和验证难度,赋能电子系统创新。”谢仲辉表示。
与芯片设计一样引起上下游企业纷纷入局的另一个产业环节是封装。台积电、三星、英特尔都将先进封装作为提升芯片性能、改善芯片能效、增强芯片架构灵活性的重要途径,以实现更加丰富的代工生态和系统级的解决方案。
今年以来,代工和IDM主力企业继续强化在封装领域的布局。台积电日本3DIC研发中心于6月举行开幕仪式,该研究所致力于下一代三维硅堆栈和先进封装技术的材料领域,旨在支持系统级创新,提高运算效能并整合更多功能。三星于7月宣布成立了半导体封装工作组,以加强与大型晶圆代工厂客户在封装领域的合作。英特尔也在今年2月的投资者大会上公布了先进封装路线图,预计今年将在Sapphire Rapids和Ponte Vecchio上交付领先的封装技术,并在Meteor Lake上试产。其2021年公布的Foveros Omni和Foveros Direct封装技术预计2023年投产。
同样需要注意的是,产业链的供需健康,以及各环节供应水平和技术能力的提升,都离不开全球畅通的分工合作模式。
“集成电路产业本质上是全球化的产业,以全球协作为基础,包括材料、设计、制造、装备、封测等多个环节。在过去一段时间,高通公司坚持多供应商策略,并联合供应商在建设新设备、扩大产能方面做了大量工作,这些策略都有助于持续改善供应。”孟樸说。
技术创新多点开花,推动产业螺旋上升
以需求带动技术创新,再以技术创新拓宽使用场景,形成技术、应用与需求的良性循环和螺旋上升,是一个产业健康发展的逻辑所在。面对半导体产业的周期性波动和疫情等“黑天鹅”事件,头部半导体企业依然没有放缓创新的脚步,而技术的独特性也是引领半导体企业穿越产业周期变化的不二法门。
制程节点是集成电路制造工艺水平的直观体现,其演进路线如同摩尔定律的心电图,反映着集成电路产业乃至全球信息化进程的发展节拍。
随着三星在6月30日宣布基于GAA(全环绕栅极)架构的3nm制程芯片启动初步生产,先进制程正式驶入3nm,晶体管技术也逐渐成为头部芯片制造企业的比拼焦点。三星表示,其3nm制程采用了MBCFET(多桥通道晶体管)技术,突破了FinFET性能限制,相比其5nm工艺实现了23%的性能提升,降低了45%的功耗并减少了16%的芯片面积。台积电将在2nm节点采用GAA架构及纳米片晶体管架构,实现在相同功耗下速度增快10%~15%,或在相同速度下功耗降低25%~30%,预计2025年开始生产。作为摩尔定律的提出者和捍卫者,英特尔计划通过全新晶体管架构RibbonFET架构将制程带入埃米(纳米的十分之一)时代。据悉,RibbonFET是英特尔研发的GAA晶体管,也是其继2011年率先推出FINFET以来首个全新晶体管架构,预计在2024年推出。
虽然先进制程节点还在向更加微小的数字挺进,但芯片性能水平的提升,已不再单纯依赖工艺的进步,设计厂商的比拼重点也越来越倾向于系统级别的创新。谢仲辉指出,服务器、AI、汽车、手机等高科技系统公司,通过SoC芯片和ASIC芯片的创新来实现系统创新。同时新兴技术的发展也反过来促进芯片设计和EDA的发展,人工智能、机器学习、云计算等技术对芯片设计和 EDA 工具本身的影响越来越大。因而Chiplet、异构计算等能够提升芯片集成规模和效率的技术受到广泛关注。
“Chiplet包含了许多EDA相关技术,包括封装内功耗分析、散热分析等,Chiplet芯片的设计验证也对传统EDA提出了新的要求。这种通过异构、系统集成的方式,也体现了我们从系统设计角度去出发的理念。半导体设计产业开始不仅是通过工艺的提升,而是更多考虑系统、架构、软硬件协同等,以应用导向驱动芯片设计,让用户得到更好的体验。” 谢仲辉表示。
架构创新也成为芯片设计的另一个发力点。精简、灵活、可拓展的RISC-V,以及异构集成等不依赖制程工艺提升芯片性能的技术,将在后摩尔时代发挥更加重要的作用。
“RISC-V或将成为x86、ARM之外的又一重要架构。随着AI技术的发展,异构架构目前已经得到了较为广泛的应用。存算一体(阻变存储器等)将目前计算机存储和运算两大基本功能单元合二为一,理论上能够和AI算法(神经网络)形成较好耦合。”彭虎说。