GPS负责测量速度、位置参量,也是导航系统中最重要的传感器之一。在开阔环境中,GPS信号相对较稳定;然而,在实际使用场景中,飞行器的使用环境往往存在较多的遮挡以及信号干扰,此时,我们不得不面对短暂丢失GPS信号的境况,此时,若无光流等等价传感器,则必须采取特殊处理逻辑,对其进行安全降落,避免出现其他异常情况。
TOF/超声波
TOF与超声波属于同一类单点测距的传感器,区别在于前者的测量束角较小,能量较为集中,属于电磁波,不容易在传输过程中损耗;而后者,属于机械波,容易在传输过程中损耗,且传输距离较近。超声波传感器在早期的多旋翼飞行器中应用较多,随着TOF传感器的成本下降,逐渐取代了超声波传感器成为单点测距传感器的中的主流。
毫米波雷达/激光雷达
毫米波雷达属于一种多点测量的电磁波雷达,其抗干扰性能较强,测量距离较远,多用于多旋翼飞行器的某一方向避障。而激光雷达则能够测量360度范围内的点云数据,可用于地图构建与导航,但价格较为昂贵,且环境适应性不如毫米波雷达般健壮。因此,其并未在多旋翼无人机当中作为主流传感器而普及。
双目相机
双目相机能够测量某一方向内物体的深度信息,可用于无人机的地图构建、避障以及位置估计等用途,价格低廉。然而,其对于环境光照也有较高的要求,需要配合其他等价传感器一同使用。
光流传感器
光流传感器负责测量速度、位置信息。它在一定程度上,能够补充GPS传感器的作用,如低空飞行时,能够提高速度测量精度;在GPS受干扰时,能够继续估计速度、位置等参量,提高导航系统的鲁棒性。
传感器作为导航系统主要的模块之一,上述介绍了多旋翼无人机中主要的传感器的特性。下面将着重介绍导航系统设计中常用的两种算法——互补滤波算法与卡尔曼滤波算法。同时,阐述一种多旋翼飞行器导航系统的设计方案。
二、导航系统设计中常用的两种算法——互补滤波算法与卡尔曼滤波算法
互补滤波算法简介
互补滤波器的主要原理是把一个主要包含高频噪声,和一个主要包含低频噪声的信号分别通过一个低通滤波器和高通滤波器,并做平均,从而使平均后的结果是真实信号较为准确的估计。简单的讲,就是将两个表征同一个状态信息的观测量分别经过低通/高通滤波器后,将其进行加权,从而使其达到优势互补的效果。
互补滤波器常被用于姿态解算、相对高度的估计等应用。其运算量小,能够在一定程度上解决状态估计的问题。然而,由于其本质上并非最优估计算法。当系统运行环境发生较大变化或出现较大扰动时,其估计精度会大幅下降,这也是其与主流估计算法——卡尔曼滤波之间存在的一个较大区别。下面为采用互补滤波算法的姿态解算流程图。
卡尔曼滤波算法简介
卡尔曼滤波算法是工业领域应用最为广泛的最优估计算法之一。卡尔曼滤波器的作用就是通过降低来自系统本身的误差和环境引起产生的误差,使得我们的估计与预测逼近最优状况。它通过已知的量,去求的隐藏的变量的过程中,需要构建已知量与隐藏变量之间的关系函数,也叫做系统动力方程。但是由于系统本身的误差与系统受环境干扰后产生的误差的原因,实际当中的估计与预测并不会与系统动力方程相符。这里的误差具体来说有三方面:系统误差/测量误差,环境误差/过程误差,估计误差。