前言
导航系统作为无人机的感知单元,承担着无人机状态参量测量与估计的重任。对于多旋翼无人机而言,其姿态、加速度、速度、位置以及各传感器的零偏与补偿系数均需要被测量或估计。这些众多参量之中只有极少一部分能够被直接或间接测量,大多数参数需要我们采用多个传感器组合的方式,结合最优估计算法进行估计,最终,才能够得到理想的状态参量。
导航系统综述
近年来,随着智能手机的普及,MEMS技术日趋成熟,大量价格低廉的MEMS器件被投入消费级市场。消费级多旋翼无人机也借势而起,快速进入大众的视线,被应用于传统的影视航拍等领域。
导航系统在多旋翼无人机系统是感知的核心单元,它根据预先设定的数据估计模型,综合多传感器测量的信息,利用最优估计算法,得到良好的状态估计参量。常用的状态估计算法如互补滤波、卡尔曼滤波及其变种等。
然而,传感器的原始测量数据往往不尽如人意,我们需要根据不同传感器的特性,对其数据进行预处理(预处理主要指传感器校准与数字滤波器设计)。然后,我们才能得到信噪比较高的测量数据。然而,传感器测量的数据无法直接或间接的表征我们所需的最终状态参量,因此,我们将预处理后的量测数据,通过状态估计算法进行最优估计,得到如姿态、加速度、速度、位置、传感器特征参数(如陀螺仪零偏、加速度零偏等)。有了准确的状态参量,我们就可以作为控制器中的反馈量,故障诊断与决策系统中的决策量等。
一、传感器及其特性
传感器作为导航系统的感受器,我们需要对每一个使用到的传感器的特性了如执掌,才能选择最合适的滤波器与参数对其进行适配;对于特殊的传感器,还需要有针对性的处理算法。
IMU
IMU(惯性测量单元),其包含加速度计与陀螺仪两种传感器,是导航系统的最重要传感器之一,它负责测量三轴加速度与三轴角速度,对于低成本的MEMS器件,其测量精度相对较低,陀螺仪的零偏稳定性也较差,在不同温度下的表现也存在较大的差异。因此,对MEMS器件进行适当的标定与补偿,同时进行零偏的动态估计是十分必要的。
气压计
气压计负责测量海拔高度。在实际使用过程中,往往将其测量数据与初始海拔做差值,从而得到相对起飞点的相对高度。气压计是一种高精度器件,由于其测量原理与环境压强、温度有关,因此,我们在实际使用中会发现:在多旋翼飞行器起飞阶段,气压计的量测数据波动较大,在飞行器大机动飞行后的刹车阶段,气压计的量测数据也波动较大,此时,我们就需要对滤波器中对应的量测噪声进行针对性的调整,以适应实际应用场景。否则,多旋翼飞行器会出现不同程度的掉高/升高现象。此外,通过对气压计的结构进行设计,也能够在不同程度上减弱环境气压变化对测量数据真实性的影响。
磁力计
磁力计负责测量三轴磁场数据,根据地磁场矢量能够辅助测量飞行器的姿态,同时,它也是航向角的主要量测传感器。然而,由于飞行器的磁场环境极其复杂,电池电源线、射频电路板以及大功率电源等器件都会在不同程度上影响磁力计对于地磁场的测量。我们在飞行器设计中,需要事先对机身的磁场环境定量测量,然后采取隔磁措施。在实际飞行过程中,我们也会碰到环境磁场的影响。此时,就需要设计诊断系统,当环境磁场异常时,及时调整磁力计融合的增益,避免导航系统发散。
GPS/RTK