8 分离系统:色谱柱是实现分离的核心部件。由柱管和固定相组成。柱管为直型不锈钢管。一般色谱柱长5~30 cm,内径4~5 mm,凝胶色谱柱内径3~12 mm,而制备色谱柱内径则可达25 mm。一般淋洗溶剂在进入色谱分离柱之前,先通过前置柱。HPLC柱的填料颗粒粒径一般约为3~10 m,填充常采用匀浆法。色谱柱的发展趋势是减小填料粒度和柱径以提高柱效。
9 检测系统 :作用——用来连续监测经色谱柱分离后的流出物的组成和含量变化的装置。紫外-可见吸收检测器、光电二极管阵列检测器、示差折光检测器、荧光检测器、电化学检测器。
10 高效液相色谱法对流动相的要求 :流动相不与色谱柱发生不可逆化学变化,以保持柱效或柱子的保留性质较长时间不变;对待测样品有足够的溶解能力;与所用检测器相匹配;粘度尽可能小,以获得较高的柱效;流动相纯度要高,价格便宜,毒性小。
11 高效液相色谱法的固定相的分类 :
(1)按固定相承受压力分:刚性固体:以二氧化硅为基质,可承受较高压力,表面可键合各种功能官能团---键合固定相,是目前应用最广泛的固定相。硬胶:主要用于离子交换色谱法和凝胶色谱法中,由聚苯乙烯与二乙烯基苯交联而成,可承受的压力较低。
(2)按孔隙深度分:表面多孔型:基体是球形玻璃珠,在玻璃表面涂覆一层多孔活性物质如硅胶、氧化铝、聚酰胺、离子交换树脂、分子筛等。优点:适用于快速分离、填充均匀紧密、机械强度高、能承受高压,适于简单的样品及常规分析:缺点:多孔层薄,进样量受限制。全多孔型:由硅胶颗粒聚集而成,比表面积大,柱容量大,小颗粒全孔型固定相孔洞浅传质速率快,柱效高,分离效果好,适合于复杂样品、痕量组分的分离分析,是目前HPLC中应用最广泛的固定相。
12 液固吸附色谱法原理:是以固体吸附剂为固定相,吸附剂表面的活性中心具有吸附能力,试样分子被流动相带入柱内时,它将与流动相溶剂分子在吸附剂表面发生竞争吸附。分离过程是一个吸附-解吸的平衡过程。
13 液固吸附色谱法固定相 :通常是硅胶、氧化铝、活性炭等固体吸附剂。硅胶最常用。流动相:极性大的试样需用极性强的洗脱剂,极性弱的试样宜用极性弱的洗脱剂。应用 :几何异构体分离和族分离,如农药异构体;石油中烷、烯、芳烃的分离。不适于强极性的离子型样品的分离,不适于分离同系物(因为它对相对分子质量的选择性较小)。
14 液液分配色谱法原理 :根据物质在两种互不相溶(或部分互溶)的液体中溶解度的不同实现分离。分配系数较大的组分保留值也较大。
15 液液分配色谱法流动相 :流动相与固定液应尽量不互溶,或者二者的极性相差越大越好。根据流动相与固定相极性的差别程度,可将液液色谱分为正相分配色谱(流动相极性小于固定相极性,极性小的先流出,适于强极性和中等极性组分分离)和反相分配色谱(流动相极性大于固定相极性,极性大的先流出,适于非极性或弱极性组分分离)。固定相 :由载体和固定液组成。常用的固定液有b,b’-氧二丙腈、聚乙二醇、聚酰胺、正十八烷、角鲨烷等。应用 :同系物组分的分离。例:分离水解蛋白质所生成的各种氨基酸,分离脂肪酸同系物等。
16 化学键合固定相 :化学键合固定相是利用化学反应将有机分子键合到载体表面上,形成均一、牢固的单分子薄层而构成各种性能的固定相。
17 化学键合固定相的特点 :固定相不易流失,柱的稳定性和寿命较高;能耐受各种溶剂,可用于梯度洗脱;表面较为均一。没有液坑,传质快,柱效高;能键合不同基团以改变其选择性。例如,键合氰基、氨基等极性集团用于正相色谱法,键合离子交换基团用于离子色谱法,键合C2,C4,C6,C8,C18,C16,C18,C22烷基和苯基等非极性基团用于反相色谱法等。因此,它是HPLC较为理想的固定相。
18 离子交换色谱法原理 :离子交换色谱法的固定相是离子交换树脂,流动相是水溶液,它是利用待测样品中各组分离子与离子交换树脂的亲和力的不同而进行分离的。
19 离子交换色谱法流动相 :水的缓冲溶液。阴离子离子交换树脂作固定相,采用酸性水溶液;阳离子离子交换树脂作固定相,采用碱性水溶液;应用:离子及可离解的化合物,氨基酸、核酸等。
20 凝胶色谱法原理 :凝胶色谱法的固定相为多孔性凝胶类物质,流动相为水溶液或有机溶剂,它是根据不同组分分子体积的大小进行分离的。小分子可以扩散到凝胶空隙,由其中通过,出峰最慢;中等分子只能通过部分凝胶空隙,中速通过;而大分子被排斥在外,出峰最快;溶剂分子小,故在最后出峰。全部在死体积前出峰;可对相对分子质量在100-105范围内的化合物按质量分离。
21 凝胶色谱法流动相 :能溶解样品且与凝胶相似(润湿凝胶并防止吸附作用)、粘度小(增加扩散速度)。常用四氢呋喃、苯、氯仿、水等。