一、开关时间
什么是开关时间
开关时间(Switch Time)或切换时间指的是开关从“导通”状态转变为“截止”状态或者从“截止”状态转变为“导通”状态所需要的时间。具体来讲是指从DUT接收到通道切换命令,到在被切换到的通道上信号的功率达到满幅度值的90%的时间。
开关时间测试
实验室验证分析
针对于实验室的测试,根据通常会考虑使用高带宽高速示波器来进行测试。测试方法是在两个通道同时获取DUT控制信号和射频信号,并测量DUT控制信号的跳变沿和射频信号到达相应功率值时刻的时间差。
验证测试中示波器带宽对于开关时间测试的影响
对于示波器而言, 关心的一个指标就是带宽。带宽描述了从探针或测试夹具前端到ADC,输入信号幅值损失小时,可以通过模拟前端的频率范围。带宽被定义为一个正弦波输入,通过示波器后测得其原始幅值70.7%的频率,也称为-3dB点。在大多数情况下,我们建议示波器的带宽是被测信号中 高频率分量的2到5倍,将捕获的信号幅度误差影响降低到小 (带宽要求=(2~5)*频率)。
对于射频开关的实验室开关时间验证测试,需要进行DUT控制信号与射频开关输出信号达到对应功率值时刻的时间差,因此对于两者而言,上升时间测量是其中的关键。
500MHz范围测量高斯模型的阶跃响应的曲线
上图显示了一个500MHz范围测量高斯模型的阶跃响应。当阶跃相应的高频率是4倍于仪器带宽时(红色曲线),我们看到的基本上仅是示波器的阶跃响应而不是输入信号的阶跃响应。因此在进行上升时间测量中有相当大的误差(416%)。被测信号与示波器(黄色曲线)具有相同带宽时,仍然会导致严重的误差(40%)。我们可以看到,在被测信号频率是示波器带宽的1/3(绿色曲线)时,上升时间测试结果将相对准确(仅4.4%)。所以一个很好的经验方法是选择一个至少是高频率3倍的模拟带宽的示波器。
NI提供从400MHz到高达5GHz带宽、分辨率从8位到14位的多种示波器选择,满足不同应用下的测试任务。配合功能强大的交互式面板,实现实验室验证性测试进行界面友好的调试,并同时搭配多种语言支持的API,如LabVIEW,C,Python等,实现快速实验室的自动化测试开发。
利用PXI高精度同步机制实现高速量产测试
在实验室验证测试中使用高带宽示波器可进行快速的波形查看及上升时间计算,但是这个方法在量产测试中即使能够满足测试需求,但是面对量产中成本和测试时间上的要求,价格不菲的高带宽的示波器在系统成本上是一个巨大的开销;同时DUT的射频输出在系统连接线设计上,除了要接入射频仪器外,还需要额外将输出接入到示波器上,这样将增加了系统的复杂度。因此,在量产测试中,我们会考虑其他设计方法。
进行开关时间量产测试时,我们使用带PPMU功能的NI Digital Pattern基于向量的数字仪器PXIe-6570,并配合NI VST矢量信号收发仪进行系统设计。PXIe-6570包含具有触发和Pattern排序的深度板载内存。通过基于向量的Pattern,它可将芯片编程到已知状态。而重要的是,基于PXIe总线的测试平台设计了高精度、低延时的定是同步机制,这样的指标对于两个模块之间同步触发的问题得到了很好的解决。
基于PXI的高同步触发
NI为PXI和PXI Express机箱提供了定时和同步解决方案。 新的PXI Express对PXI平台进行了改革,在保留向后兼容的同时,针对测量I/O设备,提供了比PXI-1更强大的同步功能。具体体现在:
● PXI Express保留了原始的PXI规范中的10 MHz背板时钟,以及单端PXI触发总线和长度匹配的PXI星形触发信号。
● PXI Express还在背板上增加了100 MHz差分时钟和差分星形触发,提供增强的抗噪音能力和业界的同步(分别为250 ps和500 ps的模块间延迟差)。NI定时和同步模块充分利用PXI和PXI Express机箱中的 定时和触发技术优势。
基于PXI的定时同步机制