1.标准时基。标准或“室温”时基,不使用任何类型的温度补偿或控制。其最大优点是便宜,但它也有最大的频率误差。下图中的曲线示出典型晶体的热行为。随着环境温度的改变,频率输出能变化5ppm或更高。对于1MHz信号为±5Hz,因此是测量中必须考虑的重要因素。在通用侧测试仪器,如示波器、函数信号发生器、频谱仪中,采用的是这种时基。在过去低端的频率计数器,其标准配置的时基也这这种得标准时基。
2.温度补偿时基。有时,我们也称之为高稳时基。一种解决晶体热变化的方法是让振荡器电路中的其它电子元件补偿其热响应。这种方法可稳定其热行为,把时基误差降低到约0.1ppm(对1MHz信号为±10.1Hz)典型的事安捷伦53200A系列频率计数器标准配置的时基就是这种,其老化率可达到0.1ppm。有时,这种时基也被用于输出频率精度更高的信号源,如安捷伦的33520A系列函数和任意波性发生器,这种时基就是一个选件
3.恒温槽控制。稳定振荡器输出的最有效方法是让晶体免受温度变化。计数器设计师把晶体放入恒温槽,保持其温度在热响应曲线的特定点。从而能得到好得多的时基稳定度,典型误差只有0.0025ppm(对于1MHz信号为±0.0025Hz)。
所得到的好处还不仅仅是与温度相关的精度。恒温槽控制时基还能降低晶体老化效应,从而不需要频繁地送校计数器。例如标准Agilent 53220A RF计数器的月老化率<0.2ppm(对于1MHz信号为±0.2Hz)。而可选高稳定度恒温槽则降到每月<0.01ppm(对于1MHz信号为±0.01Hz)。即标准时基的老化要比高稳定型高出20倍。
4.外部时基。当用频率计数器测量一些高精度和高稳定性晶振的时候,如有些无线基站的时基要求0.1ppm-0,01ppm的稳定性,几经与频率计数器可选择的恒温槽时基相当,这是,我就需要选择更高稳定性的外部时基。最通常用的是铷钟。在安捷伦的频率计数器中,都有一个外时钟输入接口,可以输入外部的铷钟信号,替代其内部的时基
有一点需要注意的是,无论温补时基还是恒温槽时基,如果希望达到其指标,需要仪器有一个预热的时间,通常是30分钟。因此,在使用频率计数器的时候,应尽量避免关机。但这会给外场测试带来很多麻烦。要在天寒地冻的环境下等待仪器30分钟的预热,会让人疯掉的。一个好的选择是给频率计数器加一个电池选件。这个电池选择不仅能省去了介入220V交流电的麻烦,更重要的是能让恒温槽时基经常性的保证需要的温度,让使用者无需等待30分钟余热。
即使时基非常稳定,但经过一段时间同样会出现老化,会偏离设定的值,会提高测试的不确定性。这就需要对时基进行校准。关于时基校准的话题,我们后面会再讲。
降低噪声的影响
当我们在利用频率计数器测量频率或周期的时候,很多时候会看到测量的读数会剧烈跳动。如果是12位数字显示,跳动的数字可能是后3-4位,甚至更多。这时候,我们就可能不知所措,不知如何读数,也不知是信号的问题还是计数器本身的问题
事实上,计数器本事是一种宽带的仪器,对于输入信号的相应非常灵敏。但这有时也会造成一些麻烦,特别是当输入的信号上伴有噪声的时候。对计数器来说,所有信号看来都基本相同。正弦波、方波、谐波和噪声。计数器关心的只是信号一连串的过零,计数器认为过零触发的信号频率就是要测量的频率,至于信号形状如何,它根本不关心。如果是纯净信号,这一过程就不存在问题。但带有噪声或毛刺的信号会“欺骗”计数器在信号“假”的过零点上触发。此时计数器就不能得到实际的计数。幸而高质量的计数器都提供解决这一问题的方法。它们首先要求在记录过零前,信号需先通过两个低和高的滞后阈值。这两个电平间的间隔称为触发灵敏度,滞后带,触发带,或其它一些类似术语。
其次是高质量的计数器还能让您调节这一带的宽度,以把不需要的触发减到最少。如下图所示,输入的信号带有一个会造成计数器出现“错误”触发的毛刺成分。由于触发带很窄,计数器在毛刺信号的点1和点3上被触发,但又同时,在实际被测信号的点2和点4)也被触发。这时如果看读数,就会变得乱七八糟。