在使用旋转式电机的电动车中,一般是通过齿轮减速将旋转力矩转换为列车的牵引力,同时也受到轮轨间粘着的限制。
直线电机电动车的推进力和制动力都利用直线电机,如上所述,有1次侧在车上和地上2种。1次侧在车上时,要将VVVF逆变器和直线电机装载在车上,使车辆重量增加,车辆价格高;但在地面上的设备仅只有反作用板,又降低了建设费用。1次侧在车上的方式已在一部分地铁得到了实际应用。
在直线电机的电动车中,推进力由铺设在钢轨间的反作用板直接传递,所以不受粘着的限制,有可能从滑行和空转产生的各种问题中解脱出来,有利于通过大坡道(最大坡度可达60‰~80‰)和小半径曲线(最小半径为50m)的线路。此外,由于直线电机无转动部件,所以不需要轴承和润滑机构,使之结构简单,延长寿命,这是其最大的特点。
在旋转电动机中,旋转力矩与其直径的平方成正比,所以要得到大的旋转力矩,电动机的直径就要增大,在直线电机中,这相当于将相应的部分在长度方向延长,而高度方向可以减小。在大型电机中,如果是1级齿轮减速,车轮直径也必须加大;而在直线电机驱动中,则不必如此,所以,可以减小车轮的直径,这将使车辆的地板面的高度降低。
以上的优点就是小断面地铁采用直线电机电动车的理由。
但是,直线电机的效率低,与相同的地铁比,电力的消耗量多,除这个缺点外,上述的优点也有不能充分发挥的时候。因为不受粘着限制,所以在牵引时,线路的坡度可以取大;但是,在制动时,如果电气制动失效,就必须依赖于机械制动,这受粘着控制,所以,线路的坡度又不能太大。此外,由于直线电机是扁平状的设备,车辆地板面的高度可以降低,这时车轮的直径也可以减小。但直径小的车轮磨耗会加快,所以实际上不能太小。由于扁平状直线电机的长度可以加长,所以,一台转向架装一台电机即可,这就是现在的直线电机地铁为全动车编组的理由之一。
3直线电机电动车在日本的应用和发展
3.1直线电机地铁
在建设地铁的成本中,开凿地下隧道的成本占了很大一块,采用直线电机电动车对降低开凿地下隧道的成本,从而对降低整个地铁的建设成本非常有利。以日本为例,普通地下铁隧道的直径为5.8m,而直线电机地铁隧道的直径为4.0~4.3m,见图1。可以估算,后者隧道工程的开凿量可比前者减少1/3左右,这意味着地铁的成本将大大下降。此外,与旋转电机相比,直线电机的形状平坦,因而可以降低车辆地板面高度和减少整个车辆尺寸,但这并不影响车辆内部的空间,即不会对旅客带来不便。直线电机只是产生车辆的驱动力,车辆仍使用钢制车轮和钢轨作为支承和导向系统。
在日本,直线电机地铁已在东京和大阪投入运用,这2个直线电机地铁的概况见表1。表中直线电机地铁车辆的控制系统均为带再生制动的VVVF逆变器控制,并均采用铝合金车体,车辆定员为90~100人。图2为东京都营12-000型直线电机地铁动车的外形照片。横滨、神户、福冈的直线电机地铁也正在建设或规划中。
3.2常导磁悬浮交通系统
常导磁悬浮交通系统与现行的铁道相比,是全新的交通系统。由于走行装置与轨道不接触,所以,噪声与振动很小,基本上不发生磨耗,在环境保护、经济性和维修方面都较为优越,利用其可通过大坡道和小半径曲线线路的特点,作为一种新型城市轨道交通是可行的,经过多年的开发研究,最高速度为100km/h的HSST-100型车辆将在名古屋等城市得到应用。
郑州微纳科技有限公司是专业研究和生产直线电机的高新科技企业,在直线电机领域已获得多项国家专利,处于国内领先水平。微纳科技为高校研发的教学直线电机系列,已成功应用于多所高校,取得了良好的效果。