图4. 死区时间插补
死区时间会影响施加到电机的平均电压,尤其是在低速运转时。实际上,死区时间会带来以下近似恒定幅度的误差电压:
其中,VERROR为误差电压,tDEAD为死区时间,tON和tOFF为晶 体管开启和关闭延迟时间,TS为PWM开关周期,VDC为直流母线电压,VSAT为功率晶体管的导通状态压降,VD为二极管导通电压。
当一个相电流改变方向时,误差电压改变极性,因此,当线路电流过零时,电机线间电压发生阶跃变化。这会引起正弦基波电压的谐波,进而在电机中产生谐波电流。对于开环驱动采用的较大低阻抗电机,这是一个特别重要的问题,因为谐波电流可能很大,导致低速振动、扭矩纹波和谐波加热。
在以下条件下,死区时间对电机输出电压失真的影响最严重:
高直流母线电压
长死区时间
高开关频率
低速工作,特别是在控制算法未添加任何补偿的开环驱动中
低速工作很重要,因为正是在这种模式下,施加的电机电压在任何情况下都非常低,死区时间导致的误差电压可能是所施加电机电压的很大一部分。此外,误差电压导致的扭曲抖动的影响更有害,因为对系统惯性的滤波只有在较高速度下才可用。
在所有这些参数中,死区时间长度是唯一受隔离式栅极驱动器技术影响的参数。死区时间长度的一部分是由功率晶体管的开关延迟时间决定的,但其余部分与传播延迟失配有关。在这方面,光隔离器显然不如磁隔离技术。
应用示例
为了说明死区时间对电机电流失真的影响,下面给出了基于三相逆变的开环电机驱动的结果。逆变器栅极驱动器采用ADI公司的磁隔离器(ADuM4223ADuM4223), 直接驱动IR的IRG7PH46UDPBF 1200 V IGBT。直流母线电压为700 V。逆变器驱动开环V/f控制模式下的三相感应电机。利用阻性分压器和分流电阻,并结合隔离式∑–∆ 调制器(同样是来自ADI公司的AD7403),分别测量线电压和相电流。各调制器输出的单位数据流被送至控制处理器(ADI公司的ADSP-CM408)的sinc滤波器,数据在其中进行滤波和抽取后,产生电压和电流信号的精确表示。
sinc数字滤波器输出的线电压实测结果如图5所示。实际线电压为10 kHz的高开关频率波形,但它被数字滤波器滤除,以便显示我们感兴趣的低频部分。相应的电机相电流如图6 所示。
图5. 实测线间电机电压:(左)500 ns死区时间;(右)1 µs死区时间