图6:低功耗基准电压源。
数字输入FR支持快速恢复功能,这对于图1中的交流耦合电路十分有利。在启动过程中或输入端出现直流阶跃事件时,外部电容需要一段时间进行充电。在此情况下,IA将进入轨到轨模式,直到积分器已建立。自动快速恢复可检测到该事件,然后转向与外部电阻并联的更小电阻上并保持一定的时间,从而大幅加速了建立过程。SW引脚用于在必要时快速建立第二个外部高通滤波器。
AC/DC数字输入决定了ECG应用中使用的导联脱落检测方法,但也可用于输入端为其他传感器的断线检测。如果正确配置,当IA的某个输入与传感器断开连接时,数字输出LOD将发出指示。
除了具有尺寸小和活动功耗低的特点,AD8233还具有一个关断引脚(SDN),可使总电源电流降至1 uA以下。这对于不常进行传感器测量的应用来说十分方便,可以显著延长总体电池寿命。即使在关断模式下,断线检测仍将保持正常工作。
现在我们对整体AD8233芯片有了更详细的了解,那么来看看关于传感器应用的几种不同思路吧。表2列出了构建非ECG电路的入门指南。
表2:针对非ECG应用的AD8233入门指南
基于Wheatstone电桥的压力传感器应用就是适合采用固定增益100和图4失调校正电路的一个好例子。此电桥可自然地将输入共模电压设为+Vs/2。电桥可由REFOUT或非专用运算放大器驱动(具体取决于测量范围和所需电流),使得电桥的电源电流在关断模式下被禁用。图7显示的是一个示例电路。由于 AD5601 DAC具有低功耗(在3 V下为60 uA)、关断引脚和小巧的SC70封装,因此对于校正电桥和IA失调是一个不错的选择。运算放大器(A1)留作占位缓冲器,可用来设置附加增益/噪声滤波和60 Hz带宽。输出放大器驱动超低功耗ARM® Cortex®-M3 (ADuCM3029)的片上ADC,ADuCM3029采用节省空间的WLCSP封装。ADuCM3029的GPIO可以控制AD8233的关断引脚。
图7:低功耗压力传感器电路。
另一个可受益于图4电路的应用就是通过热电偶进行温度测量。K型热电偶在一个很宽的温度范围内几乎呈线性,其Seebeck系数在室温下(25° C)约为41 uV/°C。假设基准端或冷端已补偿,则IA输出将是测量端已获增益的信号~4.1 mV/°C(可使用NIST查询表以获得更准确的结果)热电偶的输出就是测量端和基准端之间的差分信号,因此,必须添加一个相等的基准端漂移来将其抵销。
要开始此过程,应先确定期望的基准端温度范围,并通过NIST表确定期望漂移。例如:
若在基准端放置一个精确的温度传感器,则测量结果可反馈至VTUNE,并通过–R2/R1调节以获得合适的漂移。请注意,应使温度传感器负向漂移,或者交换IA输入,以确保在IA输出得到正向漂移。为了隔离失调和漂移校正,可将该电路分解成一个加法节点,其中VTUNE2处的失调在–R2/R3作用下固定不变。更新后的传递函数如下:
经过修改的电路如图8所示。请注意,输入共模电压通过+IN上的10 MΩ上拉电阻和–IN上的10 MΩ下拉电阻设置为+Vs/2。此配置可在出现断线事件时将+IN上拉至+Vs,从而实现AD8233的导联脱落检测功能。这种情况可通过LOD引脚监测。AD8233还具有一个集成RFI滤波器,有助于从热电偶进行任何高频拾取。在输入端串联附加电阻可以降低截止频率。