从过去几年和移动通信公司的合作交流经验来看,未来基站天线有两大趋势。
第一是从无源天线到有源天线系统。
这就意味着天线可能会实现智能化、小型化(共设计)、定制化。
因为未来的网络会变得越来越细,我们需要根据周围的场景来进行定制化的设计,例如在城市区域内布站会更加精细,而不是简单的覆盖。5G通信将会应用高频段,障碍物会对通信产生很大的影响,定制化的天线可以提供更好的网络质量。
第二个趋势是天线设计的系统化和复杂化。
例如波束阵列(实现空分复用)、多波束以及多/高频段。这些都对天线提出了很高的要求,它会涉及到整个系统以及互相兼容的问题,在这种情况下天线技术已经超越了元器件的概念,逐渐进入了系统的设计。
天线技术的演进过程:最早从单个阵列的天线,到多阵列再到多单元,从无源到有源的系统,从简单的MIMO到大规模MIMO系统,从简单固定的波束到多波束。
设计层面的趋势
对于基站而言,天线设计的一大原则就是小型化。
不同系统的天线是设计在一起的,为了降低成本、节省空间就要做得足够小,所以就需要天线是多频段、宽频段、多波束、MIMO/Massive MIMO,MIMO对天线的隔离度。Massive MIMO对天线的混互耦都有一些特殊的要求。
另外,天线还需要可调谐。
第一代天线是靠机械来实现倾角,第三代实现了远程的电调,5G如果能实现自调谐,是非常有吸引力的。
对于移动终端而言,对天线的要求也是小型化、多频段、宽频段、可调谐。虽然这些特性现在也有,但5G的要求会更加苛刻。
除此之外,5G移动通信的天线还面临了一个新的问题——共存。
实现Massive MIMO,收发都需要多天线,也就是同频多天线(8天线、16天线...)。这样的多天线系统给终端带来最大的挑战就是共存问题。
怎样降低相互之间的影响以耦合,如何增加信道的隔离度....这对5G终端天线提出了新的要求。
具体来说会涉及以下三点:
1.降低相互的影响,特别是不同功能模块,不同频段之间的互相干扰,之前学术界认为不会存在这种情况,但在工业界确实存在这个问题;
2.去耦,在MIMO系统里面,天线的互耦不仅仅会降低信道的隔离度,还会降低整个系统的辐射效率。另外,我们不能指望完全依赖于高频段毫米波来解决性能上的增长,例如25GHz、28GHz...60GHz都存在系统上的问题;
3.去相关性,这一点可以从天线和电路设计配合来解决,不过通过电路来解决方案带宽非常受限,很难满足所有频段的带宽。
5G系统的天线技术
这包括单个天线的设计以及系统层面上的技术,系统层面的上文有提到,例如多波束、波束成形、有源天线阵、Massive MIMO等。
从具体天线设计来看,超材料为基础的概念发展出来的技术将会大有裨益。目前超材料已经在3G和4G上取得了成功,例如实现了小型化、低轮廓、高增益和款频段。
第二个是,衬底或者封装集成天线。这些天线主要用在频率比较高的频段,也就是毫米波频段。虽然高频段的天线尺寸很小,但天线本身的损耗非常大,所以在终端上最好把天线和衬底集成或者更小的封装集成。
第三个是电磁透镜。透镜主要应用于高频段,当波长非常小的时候,放上一个介质可以去到聚焦的作用,高频天线体积并不大,但是微波段的波长很长,这就导致透镜很难使用,体积会很大。