在过去十年中,网络协议的应用大大增加,部分原因在于电子控制单元(ECU)的数量也在增长,这些ECU负责处理许多特定的功能,例如自适应巡航控制、防抱死制动系统和中控锁功能等。
随着带宽需求的日益增加,汽车内已经引入了多种新的网络标准和拓扑架构。这导致多种技术和标准用于ECU之间的通信,包括CAN、CAN-FD、FlexRay、LIN、以及MOST,甚至还包括USB和LVDS等其他技术和标准。传感器数据共享能够根据不同的总线联网方法以特定的方式实现,例如CAN和LIN等是用共享总线的方式来传输,不存在任何设备级别的数据交换(或转发)。
在过去的五年中,受高级驾驶辅助系统(ADAS)驱动,汽车内部更复杂的功能已经在要求更高级别的连接性。数据传输的吞吐量显著提高,同时还要求更低的网络延迟,这促使人们考虑应采用哪种网络技术。这种趋势与车载信息娱乐系统的增长、Wi-Fi网络功能的提升以及对车物通信(V2X)系统未来易用性的支持非常一致。以太网已经成为新型汽车事实上的车联网协议标准,这也许并不奇怪。传统网络协议仍然还会继续使用一段时间,因此在以太网生态系统中增加对这些传统网络协议的支持非常重要。
IEEE 1722已经定义了一种将传统通信(如CAN和LIN)封装在以太网数据包中的方法,目的是使以太网成为首要的汽车联网技术。凭借在汽车之外领域的长久验证,以太网拥有令人印象深刻的能力,将帮助简化汽车网络的复杂性。
线束是汽车内成本最高和重量最重的五大元件之一,所以使用单一经过验证的网络将有助于降低成本和重量。100Mbps和1Gbps汽车以太网标准都已经要求采用一对非屏蔽铜缆来实现传输。
汽车中互联网连接的增加也带来了潜在的网络攻击面和入侵点,因而对于安全性的关注更加重要,但这也为通过分析数据流让以太网交换机提供更多网络功能提供了可能。对于嵌入式开发人员来说,凭借有限的计算资源,在不引入任何延迟的情况下,对所有传入数据进行实时线速分析极具挑战。为了实现必要的保护或其它功能需要使用一组预先确定的规则来检测数据包,这可以根据指定的数据值或条件来具体执行,例如新的音频/视频应用以及对时间关键或敏感的网络需求场景。
在传统的以太网交换机中,有关数据包应转发到哪个端口的决定取决于OSI网络模型的第2层(L2),参见下图。