虽然Wholin [14]建议联系该领域的知名研究人员以获取更多相关文献,但我们忽略了这一步骤,因为鉴于该领域的多样性,我们无法最终确定最重要的研究人员。
数据提取和分类发展:通过Wholin的调查方法[14],一旦详尽地收集了所有相关论文,我们就记下了每篇论文的关键要素。我们使用了一种开放式卡片分类技术[15],收集了关键点,以得出我们提议的分类的维度。开放式卡片分类技术是通过参与者之间的共识将关键元素组织成概念组的过程。我们使用这种技术来达到我们的38个维度(底层)。然后,我们使用自下而上的方法,将这些维度分为9个子类别(中级),我们后来根据排序的多次迭代将其归入3个总体类别(顶级)。我们只在这项研究的作者中进行了公开卡片分类的过程,尽管这个过程通常涉及更大的群体[ 15 ]。最后,我们通过标记将收集到的每篇论文都归入我们的分类体系,通过用它们占据的每个指定维度标记每个论文。
IV.分类
上述过程产生了一个分类法(见图1),包含3个顶级类别,9个子类别和38个维度。这些类别代表了研究领域的更高层次特征。我们的目标是确定每篇论文所针对的威胁、解决方案和研究特征。特别是,抓住了研究特点,对实验的类型和严谨性进行了阐述。
反过来,每个提议的类别包括几个子类别。威胁特征有两个子类别,解决方案特征有4个子类别,研究特征各有3个子类别,可以更好地捕捉每个类别的特征。子类别还具有如图1所示的尺寸,这些尺寸捕捉并突出了区分每个子类别的技术差异,如下所示:
A.威胁特征
这一类别涉及每篇调查论文所涉及的威胁。我们将其划分为两个正交的子类别,如下所示。
1)攻击面:攻击面识别网联车辆中的潜在弱点。例如,一篇论文可能是针对基于CAN总线的攻击(其他总线由于缺乏足够的文献而未被考虑),而其他一些论文则专门关注伪造车辆ECU (电子控制单元)输出的攻击。
2)攻击方法:一篇论文可能涉及不止一种攻击方法。我们特别提请注意此子类别中的黑/灰/虫洞攻击维度。这些是基于路由的攻击,包括丢弃、选择性转发或恶意重新路由VANET[16]中的通信数据包。
B.解决方案特征
这一类别代表了为应对威胁而提议的解决方案的性质。
1)动机:异常检测技术是用于检测威胁还是也提供对威胁的响应?
2)部署点:网联车辆的哪一部分是建议部署的解决方案。例如,可以在车辆的ECU中或在VANET的中央管理机构(CA)或路侧单元(RSU)中部署解决方案。
3)安全目标:是否保护了信息安全(完整性,机密性,可用性)[17]和/或网联车辆的安全性。人身安全不在这项工作的范围之内。
4)异常检测方法:异常可以用多种方式检测。分类法区分了所使用的异常检测方法。我们在这里提请注意基于规则的方法维度,它只代表从车辆操作中自动推断规则的研究,而不是那些从专家那里引出规则的研究。
C.研究特点
虽然上述类别根据已解决的威胁和已确定的维度区分了先前的研究,但这一类别涉及研究方法和数据。
1)科学性:该子类别可记录一篇论文是属于理论论文,实验论文,实证论文还是调查论文。论文可以是类型的组合。
2)数据来源:该子类别记录论文是否使用现实数据或仿真数据。
3)数据集:该子类别记录论文是使用VANET还是车载(CAN总线等)或自然数据[18]。如果一篇论文观察了运行中的连接车辆,并观察了其自然运行环境中的数据,而没有引入任何人工数据(例如,攻击),则认为该论文使用了自然数据。
V.从分类法中得出的推论
A.关注
我们对调查的分析中发现了两个问题。研究VANET的论文都没有使用真实世界的数据。在我们调查和分类的所有论文中,VANET中甚至没有一篇论文(在研究VANET数据的35/65篇论文中)使用真实数据(所有研究都是在仿真数据集上进行的(37/65篇论文))。我们可以从表I中看到这一点,观察到在研究特征类别中没有VANET和真实世界维度上都有标记的论文。总体而言,在65篇被调查的论文中,只有28篇使用真实世界的数据集(大部分在车载网络研究中)。
我们所提出的基于异常检测的解决方案很少针对基线进行评估。从表I中的经验维度(EMP)可以看出,只有4篇被调查的论文(65篇调查论文中有4篇)评估了针对基线的拟议解决方案。我们预计建立一个量化改进的基线将是一个领域成熟的可喜迹象[79]。
B.差距