屠宰场存在若干生产环节,可根据牲畜的标识对生产过程进行流水线的监控,每个环节都分别通过屠宰场管理平台登记在数据中心。屠宰场中牲畜被宰杀后进行分割。分割前管理平台读取待分割肉类的“生产标识码”,并根据将要分割的数量生成多个“屠宰标识码”,每个屠宰标识码对应相应的分割部位,比如头、里脊、肝脏等。“屠宰标识码”和“生产标识码”在数据中心进行登记并建立对应关系。“屠宰标识码”再被标记到标签上,成为特定牲畜特定部位的唯一标识。通过“生产标识码”可以追踪到分割后的肉类,通过“屠宰标识码”可以追溯到分割前的动物,完成了动物从整体到肉类的追溯信息的转移和传递。
在肉类分割后,每个部分都需要标签进行标识,需要的标签数量相对较多,采用无机RFID标签会带来极大的成本负担,因此只能对批次进行跟踪管理,难以对分割后的肉类进行个体的跟踪管理。采用价格非常低廉的有机RFID标签或二维条码可以很好的解决成本问题。但二维条码的读取受限制,不适合屠宰场中多个生产环节中对标识码的自动读取,且二维条码易受污染,不适合屠宰场的需要。鉴于屠宰环节的时间较短,有机RFID寿命可以满足此环节的需要。有机RFID标签具有环境适应性、成本、读取方式等方面的优点,在屠宰、分割环节可以发挥不可替代的作用。
2.4 仓储物流
基于2.3中的分析,在物流仓储环节采用“屠宰标识码”进行信息的管理。通过管理平台向信息中心汇总物流基本信息、仓储基本信息、多个时间节点的物流温度、仓储温度等信息,实现动物性食品在物流仓储环节的个体化过程管理。
2.5 超市
在超市肉类被继续分割。超市管理平台读取有机RFID标签标识的“屠宰标识码”,根据分割的情况自动产生多个标识码。“用户标识码”和“屠宰标识码”在数据中心进行登记并建立对应关系。“用户标识码”被标记在标签上。“用户标识码”的数量非常庞大,由于成本的原因,无法采用无机RFID标签,只能采用二维条码或者有机RFID标签。此时二维条码和有机RFID标签不存在明显的优劣,可以根据用户的习惯加以选择。
2.6 消费者
消费者根据超市提供的用户二维条码或有机RFID标签可以通过公共查询系统查询到产品的“用户标识码”。根据“用户标识码”可以查询到超市的信息,并且可以追溯到“屠宰标识码”。根据“屠宰标识码”可以查询到肉类的运输、仓储信息,肉类在屠宰场中的生产信息,并且可以追溯到肉类的“生产标识码”。由“生产标识码”可以查询牲畜的运输销售信息、饲养环节的各种信息等。消费者可以由终端产品追溯整个肉类的生产过程。
根据肉类生产的不同环节的特点和需求,各种标签技术具有特定的适用性,如表2所示。
3 结论
有机RFID标签具有无机RFID标签方便易用的优点,又具有类似于二维条码的低廉成本,虽然在读取速度、容量和使用寿命方面劣于无机RFID,但在动物性食品溯源过程的应用中,这些特性并不是对每个环节都是必要的,这为低成本的有机RFID标签提供了发挥积极作用的空间。
动物食品安全溯源系统的主要环节包括养殖场、运输物流、屠宰场、物流仓储、超市和消费者等,根据每个环节的特点及其对标签技术的要求,有机RFID有望在屠宰场、运输仓储中替代无机RFID,对于养殖时间较短的动物,也可在养殖与物流运输环节使用有机RFID,而在超市环节可选择性使用有机RFID或二维标签。有机RFID的使用将大大降低动物食品溯源的成本,从而促进动物食品溯源技术的广泛使用。