5.1 使用脉冲波形检查
即使使用两条相位匹配的线缆和具有多个输入的采样示波器,我们仍旧不能通过同时连接两条电缆和测试两个输入来测量电缆长度是否相同,因为示波器输入之间存在内部偏差。尽管几乎所有示波器都有内部调整时延的功能,但是我们只描述一种一次只测量一个输入的方法。
图5.1: PPG和采样示波器组成的测试系统
设置在信号源(如PPG)处测量的比特率设置为1/10或者更低,模式长度设置为1024位,16位为1,所有其他位为0。将要测量的第一根线缆(A) 连接到PPG输出和示波器输入。
图 5.2:图案参数
观察示波器上PPG的输出,以查看0到1之间的一个交叉点,并将此波形保存在示波器上。接下来,断开电缆A并将第二根电缆(B)连接到同一范围输入。如果电缆长度非常相似,则可以看到存储的第一电缆A波形和当前显示的第二根电缆B之间的差异。
图 5.3:存储波形和显示波形之间的差异
尽管可以通过在时间方向上增加分辨率来进行更精确的测量,但是如果电缆之间存在较大的长度差,则在改变电缆后可能不会显示用于比较的边缘。在这种情况下,通过在时间方向上设置一个粗略的分辨率,并在观察两个电缆波形的边缘位置的同时逐渐增加分辨率来过的精确的测量。
5.2 使用TDR检查
这种方法使用TDR测量电缆长度,而不是使用PPG和示波器检查脉冲波形。
将电缆的一端连接到TDR电缆端,并使电缆的另一端保持未连接状态。测量开始时的波形如下图所示。
图 5.4:TDR线缆测试显示
对于未终结50-Ω线缆,显示器上的垂直部分时阻抗变为无穷大的地方。增加时间方向的分辨率,放大出现无限阻抗的点并保存测量结果。连接第二根线缆并进行相同测量。此处请注意,不是直接指示电缆长度的差异,是中间轴上的差异时电缆长度差异的两倍,因为TDR从作用于发送脉冲并测量直到反射返回的时间,这意味着它显示脉冲往返。
6、总结
使用高速信号正变得司空见惯。本文从测量抖动容限和测量差分信号两方面介绍了如何处理传输线长度以精确测量这些信号。这种讨论是一般性;更快比特率的情况仍有待解决。