积分法测量--色度计存在光谱失配问题
积分法的典型测量设备为亮度计/色度计,色度计一般具有三或四个光电探测器,或者在光电探测器前具有可切换的三或四个修正滤色片,以匹配图4中的CIE三刺激值曲线。探测器接收到入射光后直接进行积分测量,得到三刺激值X、Y、Z,测量原理如图5所示。
实际上,探测器的相对光谱灵敏度并不能与V(λ),曲线完美匹配,总会存在一定的偏差,一般以f1'表示光度探头的失匹配程度。
其中,为A光源相对光谱功率分布, 为被测光度探头的光谱灵敏度曲线。
根据标准JJG245-2005,标准级光度探头的V(λ)f1'需在3.5%以内。CIE/ISO TC-40的最新统计表明,世界上仅5家公司能提供f1'<3%的光度探头,远方光电也在列其中。而对于色度计来说,一般采用在光电器件前加多个滤色片匹配三刺激值曲线,匹配难度更高,失匹配误差更大。CIE用f1,x'、f1,y'、f1,z'来表示色度探头的光谱失匹配,算法与f1'相类似。而另一方面,色度探头的失匹配对彩色光的测量误差影响非常大。
本文模拟了fx1', fy1'和fz1'为3%的两种高精度色度探头,对应的失匹配情况如图6所示。利用这两种探头测量典型的红绿蓝基色光,对应光谱的峰值波长分别为630nm、530nm、450nm(带宽为20nm),模拟计算得到的相应基色光的色品坐标误差和亮度误差如表1所示。可见即使是光谱失匹配如此低的情况下,测量得到的色品坐标误差高达0.01,亮度误差近20%,色域覆盖率误差达到了4%。
而一般商用色度计(彩色亮度计)的fx1', fy1'和fz1'远远大于3%,大到有些仪器制造商根本不标示光谱失匹配系数的值,这样的仪器极大地影响了显示屏品质的正确测量评估。虽然也有厂家针对彩色亮度计提出了一些修正方法,如图7所示,通过一组标准色和测量值计算得到修正系数Kx、Ky、Kz,并以此来修正色度计的测量结果。但修正系数使用有限,测量颜色与标准色往往有差异,需要使用不同的修正系数,且每个显示屏的三基色不可能完全相同,这就要求每次改变测量对象时都必须重新获得修正系数,实际操作复杂,效率低下。