深入研究之後,就会发现这样做的一个主要缺点是:负载和回馈电路二者是完全相同的。参考电压被加在与LED串联的一个电阻上,这意味着参考电压或LED电流越高,电阻消耗的功率越大。所以,第一代专用LED驱动积体电路的参考电压要远低於现在的产品,这类似於电池充电器。电压更低意味着功耗更低,也意味着更小、更便宜、更低损耗的电流检测电阻。在图1b所示的简单的低端回馈环境下,200mV是常规的电压选择。但是,要在200mV参考电压下实现±1%的容差,则需要一个价格很高的积体电路,此时相对於标称参考电压的容差为±2mV。尽管这并不是不可能实现的,不过更高的精度需要更高的成本。±2mV的容差需要高精度电压参考所需的生产、测试和分级技术,此时,附加成本应花费在更智慧的LED驱动器上。新的费用的价值是增加了一个反馈回路,借助该回路,可以利用光输出(而非电流输出)来控制如何驱动LED。
测量光输出
就像数位产品设计师在电源设计中遇到不确定问题时会采取模拟解决问题那样,电力电子工程师出身的系统架构师在进行LED灯具设计时会想到高精度的输出。LED制造商已经清楚的表明,光通量与前向电流成正比。利用相同的电流驱动所有LED,那麽每个LED会产生相同的光通量。因此,电力电子工程师就会得出结论:高精确度的电流是必须的。这样一来,他们就忘记了光输出的流明和勒克斯值(而不是安培值)才是重点。测量电流是很容易的,而相对的,测量光则需要昂贵的大型设备,如图2所示的积分球,而大部分电子工程师对积分球都不太了解。
另外,即使容差为±0.1%的电流源(其价格会相当高)有巨大的市场价值,它对在实际光输出中产生严格的容差值上没有什麽作用。透过观察LED光通量的分级可以确定这一点。表1给出了世界三大顶级电力光电半导体制造商的高阶冷白光LED在350mA和25℃下的光通量分级结果。注意最後一列是各分级的容差平均值,而不是所有光通量分级范围内的容差。
计算光输出精度
了解到来自单个通量分级的LED光输出会有±3%到±10%的容差之後,系统工程师可能会因此得出结论:驱动电流容差值必须是越严格越好。然而从统计学角度来看,该观点并不正确。一个常见的但不正确的假设是:任何值的整体容差都等於最坏条件下各值的简单加总仅。为LED供电的电流源的容差和LED光通量的容差是互不相关的──它们在最初阶段就已相互独立。对於不相关的两个因数X和Y,整体容差Z并不是X和Y的容差之和,而是应该利用下述运算式进行计算:
表2和图3给出了整体容差和一列假设电流源容差的对比情况,此时假设LED光输出在350mA的区域内随前向电流呈线性变化。