中国科学报记者 胡珉琦
近日,量子计算原型机“九章三号”再度刷新了光量子信息技术世界纪录——处理高斯玻色取样的速度比目前全球最快的超级计算机快一亿亿倍!
“九章”背后有一位默默无闻的功臣。他虽然不被大众所熟知,但其名字一直和中国科学技术大学中国科学院量子信息与量子科技创新研究院潘建伟院士团队深度绑定。
他就是中国科学院上海微系统与信息技术研究所(以下简称上海微系统所)研究员尤立星,一个被潘建伟称为国内超导单光子探测器(SSPD)“顶梁柱”的人。
不久前,尤立星入选美国斯坦福大学与Elsevier联合发布的第六版《年度全球前2%顶尖科学家榜单》。今年7月,他还因在“超导电子学和量子信息处理”领域的突出贡献,获得欧洲应用超导学会(ESAS)颁发的应用超导杰出贡献奖。该奖项全球每两年评选1次,每次仅评选1位科学家。
在国内,将高端科研仪器做到国际顶尖的科学家是“稀缺品”。过去15年,尤立星一直致力于国产超导电子器件与应用成果的研发和转化。他说,他所追逐的并非超导“极限”竞赛。
背后的人
2019年10月,谷歌在《自然》发表论文,称其量子计算机已经实现了“量子霸权”。尽管其一度引发争议,但在当时着实刺激了量子圈。
几天后,尤立星就接到了老搭档、中国科学技术大学潘建伟团队成员陆朝阳教授的“任务”——希望他在5个月内提供100个高性能SSPD,加速“九章”光量子计算原型机的研发。
尤立星团队从事的是用超导技术来做单光子探测器,服务于整个光量子信息领域,无论是量子通信还是光量子计算领域,都与潘建伟团队保持着密切的合作。
“九章”是以光作为媒介实现计算的,而光的量子极限就是单个光子。单光子探测器就是量子极限灵敏度的光测量设备,可以探测单个光子。要是没有这个探测器,用光传递量子信息就不可能实现。
“……需求紧急,请以最高优先级保障,拜托!”潘建伟的微信紧随其后,足见该探测器有多重要。
但只有尤立星自己清楚,这样的需求和极限任务无异。
对于光量子探测芯片,在实验室完成样品到实现批量供应,还要保证较高的平均探测效率,难度升级是指数级的。
“科学家的研究思维和产业界的产品思维截然不同。”尤立星说,前者想的是怎么在实验室把一个芯片从0到1做出来,同时,竞争对手追求的是如何进一步提升单个样品的探测效率;而后者考虑的是如何从1到100实现工程化,不仅要实现较高的成品率,还要对用户友好,能解决客户的实际问题。
尤立星的与众不同是他从0开始的那一刻起,就已经想到了1到100的过程。
作为光量子信息领域的一个关键器件,其国外封锁从始至终。早在2013年,国外实验室SSPD的最高系统探测效率已经达到90%,但进口到中国的产品远不及这一水平。
国内单光子探测器研发起步稍晚,同时期,尤立星团队能达到的最高探测效率只有70%多,且一度停滞不前。之所以出现这样的困境,其实是尤立星“自找”的。
超导研究存在一个工作温度的问题,选择不同的材料做探测器,将会对应不同的工作温度。“当时有一种热门材料叫硅化钨,它比较容易实现很高的探测效率,但条件是工作温度极低,这意味着需要用昂贵的制冷机来维持环境温度。”
尤立星则反其道而行之,他坚持了一条较高工作温度材料的研究路径,大大降低了应用成本,也让用户使用更加友好。这种材料叫氮化铌(NbN),但NbN要达到与硅化钨同样的探测效率,对材料本身和纳米线加工工艺的精细化要求更加苛刻。
于是,当其他研究团队不惜一切代价追求在更低的工作温度下获得更高的探测效率时,尤立星却坚持用尽可能低的成本,默默打磨工艺技术。
直到2017年,尤立星团队首次利用NbN材料研制SSPD创造了系统探测效率达92%的世界纪录,竞争局面开始逆转。在达到同等系统探测效率的情况下,SSPD成本更低、更好用,应用空间也更大。