预期目标:到2025年,智能算力集群节点扩展规模不低于1024卡,与国内外主流人工智能软硬件环境完成兼容适配;总体算力规模超过500 PFLOPS,PUE不超过1.25。开发支持低响应时延、动态扩展等特性的集群云端运维管理和调度系统,针对基于Transformer的重点模型具备分钟级断点续训能力。
(三)高质量数据集
揭榜任务:建设大规模通用中文语料库,加强主流中英文数据的清洗及过滤,构建标准化语料资源池,整合文字、图片、音视频等多模态数据集,并实现对外开放。打造高质量代码、书籍、人类反馈指令数据、科学文献等专业知识数据集。面向工业、医药、电信、金融、教育等重点行业汇聚高质量、权威的行业训练数据资源,赋能行业发展。
预期目标:到2025年,实现通用文本数据集规模总量达到10TB、通用图文数据集数据总量达到1亿对、通用音视频数据集数据总量达到100TB。面向编程代码、科研文献、百科教材等专业知识,以及工业、医药、电信、金融、教育等重点行业,形成不少于3个高质量数据集,各数据集赋能10个及以上专用模型训练或微调。
(四)人工智能风险管控软件
揭榜任务:针对人工智能训练数据投毒、算法模型漏洞、敏感有害生成内容等重点风险,研发多维度一体化的人工智能风险管控软件产品。构建人工智能安全风险测评数据集,提出相应安全风险的检测、防御方法,支持人工智能应用服务、中间件与基础依赖组件等对象的漏洞检测与及时预警,识别生成内容潜在偏见歧视、伦理、违规违法等风险。
预期目标:到2025年,构建3个人工智能安全风险测评数据集,覆盖偏见歧视、违规违法、恶意指令注入、伦理等多维度安全风险,提出不少于10种面向人工智能数据安全风险的检测、防御方法,组织不少于5个典型智能产品开展试点验证工作。
二、重点产品
(五)语言大模型产品
揭榜任务:探索以知识为中心的大模型范式,通过上下文编码、动态记忆机制等核心技术,提升语言认知大模型的智慧涌现水平。对标国际先进产品,提升中英双语的语义理解、逻辑推理、代码编程等能力,实现在线知识咨询功能,能够实时融合基于互联网的海量信息。开展大模型推理加速算法研究,提升语言大模型赋能智能产品的部署效率。
预期目标:到2025年,语言大模型在中英文均达到世界先进水平,提升大模型泛化能力,零样本或少样本学习在超过30个基准中达到优异性能。中英双语认知能力全面提升,在模型常识性、专业性、逻辑性、推理能力方面取得重大突破。语言大模型在数字座舱、机器人或语音助手等领域实现应用。
(六)语音大模型产品
揭榜任务:研究具有高通用性和高解释性的通用语音表征理论和方法,突破语音数据依赖性强、领域适应性弱等难题,实现超大规模语音表征训练、语音表征信息解耦合建模等关键技术,支撑语音大模型的泛化性。构建面向多个语种、多个语音任务共享的语音大模型,赋能语音助手、虚拟客服、数字人等智能产品的智能化升级。
预期目标:到2025年,语音大模型达到世界先进水平,覆盖语种超20个,其中汉语、英语、法语等5个以上重点语种的处理效果业界领先,可支撑语音识别、语音合成、声纹识别、情感识别等10个以上语音任务,性能较传统模型实现显著提升。
(七)视觉大模型产品
揭榜任务:研究视觉大模型统一算法底层架构,创新视觉大模型训练路径,构建支持动态视觉理解和生成统一的底层基础模型架构,突破静态向动态视觉大模型的范式升级。视觉大模型能够通过少样本微调解决图像、视频等视觉任务,生成式任务指标达到国际先进水平,解决视觉大模型的高效设计、有效训练、快速推理等关键技术问题。
预期目标:到2025年,训练超过千亿级参数规模的通用视觉大模型,能够通过少样本微调方式解决超过30个视觉基础任务(包括10个以上动态视觉或三维视觉任务)并且表现出色,推理速度达到全球领先,具备在智能终端产品的部署能力。
(八)多模态大模型产品