10月23日,上海市科学技术奖再度揭晓。胸怀“国之大者”,坚持“四个面向”,一大批标志性成果竞相涌现,为正处于关键跃升期的上海国际科技创新中心建设增添底色和亮度。
九三学社上海市委咨询专家团成员、原副主委,中国科学院上海微系统与信息技术研究所副总工程师李昕欣主持完成的项目“变温谐振微悬臂梁的材料原位测量分析方法与科学仪器技术”荣获2023年上海市技术发明奖一等奖。
让我们一起走近这项优秀创新成果!
项目名称:变温谐振微悬臂梁的材料原位测量分析方法与科学仪器技术
完成单位:中国科学院上海微系统与信息技术研究所等
完成人:李昕欣 等
奖励等级:技术发明一等奖
与物质相关的科学分析仪器中的一类为吸附与热分析仪器,是用变温实验来表征分析材料或反应相关的表界面和体内结构理化性质,是新材料、新能源、催化反应和环境保护等“双碳”战略科技相关的每个实验室必备的重要仪器。
该类科学仪器的高端产品技术长期以来被美、欧、日这些西方发达国家垄断,不只价格昂贵,还可使我国在相关科研手段和工具的源头上被“卡脖子”。并且,该类进口仪器目前已很难满足当今尖端科技应用的需求,对精细特性经常“测不准甚至测不到”。原因是该类仪器测量分析核心部分釆用精密结构式的热天平-加热炉系统,在程序升温过程中测量质量变化的最好分辨能力仅为1微克,样品需求量为数十毫克,即使在较慢的升温速度下,也很难测准甚至测不到很多理化特性参数值。而经过长期改进,沿着精密结构改进的路已达极限,需从零到一探寻原始创新技术来解决。
图1 李昕欣领奖照片
在科技发展历史上,芯片技术无数次对传统技术进行了颠覆,包括智能手机等相机CIS芯片对感光胶片相机的颠覆等等。这一次,MEMS传感芯片的研究者再一次实现了颠覆性创新。中国科学院上海微系统与信息技术研究所的李昕欣教授团队经过十几年奋斗,首创出一种集成MEMS传感测量芯片,将仅有数十纳克的样品上载于一种硅微悬臂梁上,在微米尺寸的悬臂梁上集成了程序升温、微机械谐振驱动和频率检测元件,实现了在快速升温中原位测量化学反应或表面吸附引起的微小质量变化,一次将分辨能力提高了6个数量级至优于1皮克,首次达到了动态测量作用分子数的统计热力学和动力学过程的水平。有了如此强大的超灵敏原位测量能力,就可以对该类仪器进行技术的根本性升级了。
图2 超灵敏原位变温测量微悬臂梁MEMS芯片技术
将传感芯片的测量方法与物质理化特性理论和量化表征方程等有机结合,再配以仪器相关的软硬件技术开发,最终在全球首次实现了芯片测量化的系列创新仪器。具体看,仪器的重大科技创新包括如下三个方面。
一、将现有仪器的非原位测量方法变革为原位测量,将全球当前在用的非原位测量TPD仪换代为原位测量的in-situ TPD仪。TPD全称为程序升温脱附分析仪,是研究催化特性重要的科学仪器。当前的进口仪器因为在样品原位根本测不到升温过程中痕量的脱附分子数量,不得已要外联昂贵的质谱检测器在尾气端进行非原位测量,造成经常“测不准和测不到”。特别是对脱附活化能这个催化活性最重要的参数,即使耗时多天反复多次升温实验后,也只能用描点作图直线拟合法近似估算,而往往因为数据点分散造成测不到活化能。本发明首次实现了超高灵敏度原位测量,将TPD变革为样品原位测量,终于使原来测不到的测到了,测不准的测准了。尤其是活化能的测量变革颠覆了仪器长期沿用的中外教科书经典。仅用一次快速升温,即可将测到的更详尽实验数据带入经典动力学方程精确解析求解出活化能,同时使分析时长从数天缩短至数小时。而原位测量活化能的新原理方法也即将写入教科书,成为中国人书写的全新科学经典。
图3 原位TPD仪对现有非原位TPD仪的科学和技术颠覆