为了使测量尽可能的精确,LIGO的物理学家必须保证光波的波峰和波谷—即相位—保持绝对的稳定。受制于量子力学的不确定性原理,这种情况下的光波振幅必然不会稳定。这种不可避免的振幅扰动会对反射镜产生随机的冲力,使镜子产生微小的运动从而激起时空的涟漪,Pang说。当然,和你甩出一个保龄球所产生的引力波相比,LIGO产生的引力波可以真算不了什么,但是效率却是最佳的。
“这个结论并不出乎意料”,北京师范大学的物理学家Fan Zhang说,“这个探测器的本质就是它与引力波的耦合,一旦发生了耦合,探测引力波和发射引力波就是一回事了。”
虽然微弱到无法直接被观测,LIGO产生的引力波仍然可以被用来探测宏观物体之间的量子效应,Pang说。量子力学下的微观粒子(比如电子)可以同时出现在两个地方,很多物理学家就大胆地推测,也许我们可以做到让宏观物体(比如LIGO的一个反射镜)处于相似的量子态中。
这种微秒的状态不会持续太久,系统受外部世界影响会发生“退相干”效应,从而坍塌到某一个确定的状态。“然而,我们可以获得退相干的速度,并与引力波的影响相比较”,Pang说。一些物理学家认为重力在宏观物体量子态坍塌的过程中起到了特殊的作用。
“这是一个很有意思的想法,但实现起来非常有具挑战性,”Pang的合作者同时也是加州理工学院的物理学家Yiqui Ma说到,“为了看到引力波的量子效应,研究人员必须消除其它所有的退相干源。”Pang认同了这一点,“真是难以至信的困难”,她说,“但是也只有LIGO有条件实现它了。”