在接下来的几十年,科学家用Sagnac效应跟踪旋转。该原理支持用激光器和纤维光学陀螺仪替代上世纪70年代的精巧机械陀螺——现在这是导航的标准。他们测量的旋转像一架喷气战机的转弯和下潜一样又快又大。建立更大、更精确的大地测量学(测量地球自身)环形激光器的想法直到上世纪90年代才出现,当时近乎完美的反光镜刚开始出现。
首批类似激光器之一是C-II,这是一种拥有1米长方形手臂的环形激光器,于上世纪90年代中期在新西兰建造,位于二战后一个废弃的燃料库中,那里的温度比较稳定。C-II还推动了慕尼黑理工大学激光物理学家Ulrich Schreiber的职业发展。
在获得欧盟研究委员会的资助之后,Igel向Schreiber说出了他的最大挑战:设计ROMY。ROMY臂长12米,比此前的环形激光器更加精确,能够以十亿分之一的精度感应地球的旋转。它的设计不只是一个方形环,而是有4个三角形的环。其中3个被用来约束朝着任何方向进行的旋转,第4个环可以增加吞吐率。建造工作在2016年3月开始,并在6个月后竣工。
今年3月,工程师在4个环中同时实现了第一束光,这表明这个几何四面体非常精确,足以保证所有激光正常产生共鸣。“它看似无足轻重实则不可或缺。”Igel说,“每次当红色激光可见时,人们都会非常激动地尖叫出声。”该团队正在研究对这些激光进行干涉以测量Sagnac效应。他们将于近日在奥地利维也纳召开的欧洲地球物理科学联合会的一次会议上报告首次测量结果。[pagebreak]
实时测量
最终,ROMY科学家将监测白昼时长和地球轴心位置的变化。它们都不像人们想象的那样固定不变,而是每天进行着毫秒或厘米级的变化。太阳和月亮都在用引力拖拽着地球,同时大陆漂移、洋流变化以及冰河时代冰川退化改变周围质量造成的地壳反弹,都会改变地球的惯性运动,从而改变它的旋转。即便是飓风和地震也会对其产生微小的推力。