在纳米表征领域,1988年,化学所研制出我国第一台集计算机控制、数据分析和图像处理系统于一体的扫描隧道显微镜(STM)和我国第一台原子力显微镜(AFM),奠定了我国纳米科技研究的物质基础。2001年,中国科大在国际上首次利用低温STM获得能够分辨碳-碳单键和双键的C60单分子图像,并于2013年在国际上首次实现了亚纳米分辨的单分子光学拉曼成像,获2014年度中国科学院杰出科技成就奖。2013年,国家纳米中心利用AFM技术在国际上首次实现了对分子间氢键的直接成像,为化学界争论了80多年的“氢键本质”问题提供了第一个直观证据。
在纳米材料与器件领域,物理所、金属所等单位在碳纳米管的制备、纳米结构及其物性调控、表面纳米化等方面,20多年来产出了一批国际引领性成果,促进了该领域的研究和发展。2017年,上海微系统所联合相关企业设计出低功耗、长寿命、高稳定性的钪-锑-碲(Sc-Sb-Te)新型高速相变材料,对于我国突破国外技术壁垒、自主开发存储器芯片具有重要意义。化学所基于长期基础研究,发展了纳米绿色印刷的完整产业链技术,并于2016年建成世界首条免砂目纳米绿色印刷版材示范线。
在纳米催化领域,2011年,大连化物所在国际上首次制备出Pt/FeOx单原子催化剂,并提出了单原子催化新概念,入选美国化学会2016年度十大科研成果。2014年,基于纳米限域催化新概念,首创甲烷无氧制烯烃和芳烃催化过程,实现一步高效转化,获2015年度中国科学院杰出科技成就奖。
6 人工合成生物学研究
继1965年我国在国际上首次人工合成牛胰岛素(获1982年度国家自然科学奖一等奖)之后,1981年11月,由上海生化所、上海细胞所、上海有机所、生物物理所和院外相关单位组成的联合攻关团队,历时13年,在国际上首次人工合成了包含76个核苷酸的酵母丙氨酸转移核糖核酸完整分子。该成果获1987年度国家自然科学奖一等奖,对揭示生命起源和核酸在生物体内的作用意义重大,为进一步了解遗传和其他生命现象、研制和应用多种核酸类药物奠定了理论基础,标志着我国在该领域进入世界先进行列。
2018年8月,分子植物科学卓越创新中心采用合成生物学“工程化”方法和高效使能技术,以单细胞真核生物酿酒酵母(天然含有16条线型染色体)为研究材料,在国际上首次人工创造出仅含单条染色体的真核细胞。这是继人工合成牛胰岛素和酵母丙氨酸转移核糖核酸之后,我国科学家再一次利用合成科学策略回答了生命科学领域的重大基础问题,将加深人类对生命本质的认识。
7 非人灵长类模型与脑连接图谱研究
脑科学与智能技术卓越创新中心在非人灵长类模型与脑连接图谱研究方面取得一系列重要原创成果。2017年年底在国际上率先攻克非人灵长类动物体细胞核克隆这一世界性难题,11月27日世界上首个体细胞克隆猴“中中”诞生,12月5日第二个克隆猴“华华”诞生。这是继1997年英国克隆羊“多莉”后克隆生物技术领域的又一重大突破,将有力促进生命科学基础研究和转化医学研究,为探究众多复杂疾病机理、建立有效诊治和干预手段及新药创制带来光明前景。
2016年,该卓越创新中心在世界上首次建立了携带人类自闭症基因的非人灵长类动物模型——食蟹猴模型,构建了非人灵长类自闭症行为学分析范式,为观察自闭症的神经科学机理研究提供了一扇重要窗口,为深入研究自闭症的病理与探索可能的治疗干预方法奠定了重要基础。
2016年,该卓越创新中心成功绘制了更精确的人脑功能分区图谱,即人类脑网络组图谱,突破100多年来传统脑图谱绘制的瓶颈,提出了“利用脑连接信息绘制脑图谱”的思想,第一次建立了宏观尺度上的活体全脑连接图谱,为实现脑科学和脑疾病研究的源头创新提供了重要基础。
8 基因组研究