否则,望远镜将无法正常冷却,对红外观测将毫无用处:这是它的主要目的。
这里显示的是遮阳板原型,比例为三分之一的部件。
詹姆斯·韦伯的“望远镜端”会被动地将自己冷却到不高于50K:足以使氮气液化的温度。
詹姆斯·韦伯之所以需要被安置在离地球如此之远的L2拉格朗日点,而不是像哈勃那样处于低地球轨道上,是因为它将被前所未有地被动冷却。
一个巨大的五层防晒罩是专门为詹姆斯·韦伯制作的,它能反射尽可能多的阳光,并遮挡住它下面的那一层。
如果它在近地轨道上,地球发出的红外线热量将阻止它达到必要的低温。
钻石形状的遮阳板本身是巨大的:长尺寸为21.2米,短尺寸为14.2米。
每一层都有面向太阳的“热面”和面向望远镜的“冷面”。
最外层的热面温度将达到383K,即231°F。当你到达最内层时,热面只有221K,即-80°F,而冷面则一直下降到36K,或-394°F。只要望远镜保持在~50K以下,它就能按设计正常工作。
哈勃极深场的一部分,总共拍摄了23天,这与詹姆斯·韦伯预期的红外模拟图像形成了鲜明对比。
由于宇宙-韦伯场预计将达到0.6平方度,它应该会在近红外线揭示大约50万个星系,揭示出迄今为止还没有天文台能够看到的细节。
虽然NIRCam将产生最好的图像,但MIRI仪器可能会产生最深刻的数据。
有了主动的低温冷却,韦伯的温度将一直降到~7K。被动冷却达到的低温在36到50K的范围内,对于韦伯的所有近红外仪器的运行来说是完全足够的。
这包括它的四个主要科学仪器中的三个:NIRCam(近红外相机)、NIRSpec(近红外光谱仪)和FGS/NIRISS(精细制导传感器/近红外成像仪和无缝隙光谱仪)。
它们都设计成在39K下工作:完全在被动冷却的范围内。
但第四台仪器,MIRI(中红外成像仪),需要冷却到比被动冷却更远的地方,这就是制冷机的用武之地。
氦只有在大约4K时才会变成液体,所以通过在MIRI仪器上安装液氦制冷机,韦伯的科学家可以将其冷却到所需的工作温度:~7K。你想要探测的光的波长越长,你需要让仪器变得越冷,这是詹姆斯·韦伯太空望远镜做出大多数设计决定的主要原因。
当彗星和小行星围绕太阳运行时,它们可能会稍微解体,随着时间的推移,轨道轨道上的碎片会伸展开来,导致我们在地球穿过泥石流时看到的流星雨,正如美国宇航局(NASA)的斯皮策太空望远镜拍摄的这张图像所显示的那样。
只有在低于我们想要观测的波长的温度下冷却,我们才能获得这样的数据;当涉及到詹姆斯·韦伯时,中红外观测是依赖于冷却剂的。
与美国宇航局的斯皮策号不同的是,斯皮策号在冷却剂耗尽后过渡到了一次“温暖”的任务,而詹姆斯·韦伯则应该在其整个生命周期内保持较低的温度。
保持詹姆斯·韦伯积极冷却的液氦原则上永远不应该耗尽;这是一个封闭的系统。
然而,正如任何曾经从事实验物理工作的人都可以证明的那样,无论你如何防范泄漏,都不可避免地会发生泄漏。
在最乐观的情况下,韦伯的设计任务至少是5.5年,在最乐观的情况下有可能达到10年或更长时间,如果它符合设计规范,它的低温冷却剂应该不会用完。
然而,总有出现问题的可能性,我们无法充分或在整个任务中主动冷却中红外成像仪,这将侵蚀韦伯对越来越长波长的敏感性。
(同样的警告也适用于防晒罩损坏或效率低下的近红外仪器。)
詹姆斯·韦伯太空望远镜的温度越高,它可以探测的波长范围就越窄。