当前位置: 首页 » 技术方案 » 解决方案 » 汽车行业 » 正文

自动驾驶汽车传感器融合系统及多传感器数据融合算法浅析


  来源: 汽车测试网 时间:2018-07-04 编辑:思杨
分享到:




大脑里的生物神经细胞和其他的神经细胞是相互连接在一起的。为了创建一个人工神经网络,人工神经细胞也要以同样方式相互连接在一起。为此可以有许多不同的连接方式,其中最容易理解并且也是最广泛地使用的,就是如图所示那样,把神经细胞一层一层地连结在一起。这一种类型的神经网络就叫前馈网络(feed forward network)。这一名称的由来,就是因为网络的每一层神经细胞的输出都向前馈送(feed)到了它们的下一层(在图中是画在它的上面的那一层),直到获得整个网络的输出为止。

神经细胞通过输入层、隐含层和输出层的链接,形成一个复杂的神经网络系统,通过有效的学习训练,使输出层的结果与现实越来越靠近,误差越来越小,当其精度满足一定的功能需求时,神经网络训练完毕,此刻构建的神经网络系统即能为我们解决众多机器学习上的图像识别、语音识别、文字识别上的问题。

在智能驾驶目前的发展历程上看,人工神经网络技术,乃至现在最新的深度学习技术,广泛用于视觉感知模块的车辆识别、车道线识别、交通标志识别上。通过对中国路况工况的数据采集和处理,广泛获取国内不同天气状况(雨天、雪天、晴天等),不同路况(城市道路、乡村道路、高速公路等)的真实的环境数据,为深度学习提供了可靠的数据基础。此处神经网络的输入层数据,也即是传感器获取的数据,是多源多向的,可以是前挡风玻璃片上视觉感知模块的障碍物位置、形状、颜色等信息,也可以是毫米波雷达、超声波雷达检测的障碍物距离、角度、速度、加速度等信息,还可以是360°环视系统上采集的车位数据、地面减速带数据。

卡尔曼滤波

卡尔曼滤波(Kalman filtering)一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,它是最优,效率最高甚至是最有用的。Kalman滤波在测量方差已知的情况下能够从一系列存在测量噪声的数据中,估计动态系统的状态。由于,它便于计算机编程实现,并能够对现场采集的数据进行实时的更新和处理, Kalman滤波是目前应用最为广泛的滤波方法,在通信、导航、制导与控制等多领域得到了较好的应用。

卡尔曼滤波是多源传感数据融合应用的重要手段之一,为了扼要地介绍卡尔曼滤波的原理,此处形象地用毫米波雷达与视觉感知模块融合目标位置的过程描述。举一个简单的例子,目前高级辅助驾驶系统(Advanced Driver Assistance System,ADAS)上,搭载有毫米波雷达和超声波雷达模块,两者均能对障碍物车辆进行有效的位置估计判别。雷达利用主动传感原理,发射毫米波,接收障碍物回波,根据波传播时间计算角度距离。两者均能识别出车辆位置,那么我们该如何融合信息,如何取舍,计算出具体的车辆位置呢?卡尔曼正是解决这个问题的方法之一。我们获取的车辆位置在任何时刻都是有噪声的,卡尔曼滤波利用目标的动态信息,设法去掉噪声的影响,得到一个关于目标位置的好的估计。这个估计可以是对当前目标位置的估计(滤波),也可以是对于将来位置的估计(预测),还可以是对过去位置的估计(插值或平滑)。卡尔曼滤波就是这样一个根据当前时刻目标的检测状态,预测估计目标下一时刻目标检测状态的一个动态迭代循环过程。

高级辅助驾驶系统ADAS是目前智能汽车发展的重要方向,其手段是通过多源传感器信息融合,为用户打造稳定、舒适、可靠可依赖的辅助驾驶功能,如车道保持系统(Lane Keeping Assist, LKA),前碰预警(Forward Collision Warning, FCW),行人碰撞警告(Pedestrian Collision Warning,PCW),交通标记识别(Traffic Sign Recognition,TSR),车距监测报告(Head Monitoring and Warning,HMW)等。多源信息的融合,目的在于数据信息的冗余为数据信息的可靠分析提供依据,从而提高准确率,降低虚警率和漏检率,实现辅助驾驶系统的自检和自学习,最终实现智能驾驶、安全驾驶的最终目标。


关键词:传感器 自动驾驶 信息融合    浏览量:4504

声明:凡本网注明"来源:仪商网"的所有作品,版权均属于仪商网,未经本网授权不得转载、摘编使用。
经本网授权使用,并注明"来源:仪商网"。违反上述声明者,本网将追究其相关法律责任。
本网转载并注明自其它来源的作品,归原版权所有人所有。目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。如有作品的内容、版权以及其它问题的,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
本网转载自其它媒体或授权刊载,如有作品内容、版权以及其它问题的,请联系我们。相关合作、投稿、转载授权等事宜,请联系本网。
QQ:2268148259、3050252122。


让制造业不缺测试测量工程师

最新发布
行业动态
技术方案
国际资讯
仪商专题
按分类浏览
Copyright © 2023- 861718.com All rights reserved 版权所有 ©广州德禄讯信息科技有限公司
本站转载或引用文章涉及版权问题请与我们联系。电话:020-34224268 传真: 020-34113782

粤公网安备 44010502000033号

粤ICP备16022018号-4