长距离无线通信技术用于提供即时的互联网接入,主要用4G/5G技术,特别是5G技术,有望成为车载长距离无线通信专用技术。短距离通信技术有专用短程通信技术(DSRC)、蓝牙、WiFi等,其中DSRC重要性较高且亟须发展,它可以实现在特定区域内对高速运动下移动目标的识别和双向通信,例如V2V、V2I双向通信,实时传输图像、语音和数据信息等。
(3)智能互联技术
当两个车辆距离较远或被障碍物遮挡,导致直接通信无法完成时,两者之间的通信可以通过路侧单元进行信息传递,构成一个无中心、完全自组织的车载自组织网络,车载自组织网络依靠短距离通信技术实现V2V和V2I之间的通信,它使在一定通信范围内的车辆可以相互交换各自的车速、位置等信息和车载传感器感知的数据,并自动连接建立起一个移动的网络,典型的应用包括行驶安全预警、交叉路口协助驾驶、交通信息发布以及基于通信的纵向车辆控制等。
(4)车载网络技术
目前汽车上广泛应用的网络有CAN、LIN和MOST总线等,它们的特点是传输速率小、带宽窄。随着越来越多的高清视频应用进入汽车,如ADAS、360度全景泊车系统和蓝光DVD播放系统等,它们的传输速率和带宽已无法满足需要。以太网最有可能进入智能网联汽车环境下工作,它采用星形连接架构,每一个设备或每一条链路都可以专享100M带宽,且传输速率达到万兆级。同时以太网还可以顺应未来汽车行业的发展趋势,即开放性兼容性原则,从面可以很容易地将现有的应用入到新的系统中。
(5)先进驾驶辅助技术
先进驾驶辅助技术通过车辆环境感知技术和自组织网络技术对道路、车辆、行人、交通标志、交通信号等进行检测和识别,对识别信号进行分析处理,传输给执行机构,保障车辆安全行驶。先进驾驶辅助技术是智能网联汽车重点发展的技术,其成熟程度和使用多少代表了智能网联汽车的技术水平,是其他关键技术的具体应用体现。
(6)信息融合技术
信息融合技术是指在一定准则下利用计算机技术对多源信息分析和综合以实现不同应用的分类任务而进行的处理过程,该技术主要用于对多源信息进行采集、传输、分析和综合,将不同数据源在时间和空间上的冗余或互补信息依据某种准则进行组合,产生出完整、准确、及时、有效的综合信息,智能同联汽车采集和传输的信息种类多、数量大,必须采用信息融合技术才能保障实时性和准确性。
(7)信息安全与隐私保护技术
智能网联汽车接入网格的同时,也带来了信息安全的问题,在应用中,每辆车及其车主的信息都将随时随地地传输到网络中被感知,这种显露在网络中的信息很容易被窃取、干扰甚至修改等,从而直接影响智能网联汽车体系的安全,因此在智能网联汽车中,必重视信息安全与隐私保护技术的研究。
(8)人机界面技术(HMI)
人机界面技术,尤其是语音控制、手势识别和触摸屏技术,在全球未来汽车市场上将被大量采用。全球领先的汽车制造商,如奥迪、宝马、奔驰、福特以及菲亚特等都在研究人机界面技术。
不同国家汽车人机界面技术发展重点也不尽相同。美国和日本侧重于是远程控制,主要通过呼叫中心实现;德国则把精力放在车主对车辆的中央控制系统,主要是奥迪的MMI、宝马的iDrive、奔驰的 COMMAND。