人工智能作为新一轮产业变革的核心驱动力,将催生新的技术、产品、产业、 业态、模式,从而引发经济结构的重大变革,实现社会生产力的整体提升。麦肯 锡预计,到 2025 年全球人工智能应用市场规模总值将达到 1270 亿美元,人工智 能将是众多智能产业发展的突破点。
通过对人工智能产业分布进行梳理,提出了人工智能产业生态图,主要分为 核心业态、关联业态、衍生业态三个层次。
下面将重点对核心业态包含的智能基础设施建设、智能信息及数据、智能技术服务、智能产品四个方面展开介绍,并总结人工智能行业应用及产业发展趋势。
智能基础设施
智能基础设施为人工智能产业提供计算能力支撑,其范围包括智能传感器、 智能芯片、分布式计算框架等,是人工智能产业发展的重要保障。
(1)智能芯片
智能芯片从应用角度可以分为训练和推理两种类型。从部署场景来看,可以 分为云端和设备端两步大类。训练过程由于涉及海量的训练数据和复杂的深度神 经网络结构,需要庞大的计算规模,主要使用智能芯片集群来完成。与训练的计 算量相比,推理的计算量较少,但仍然涉及大量的矩阵运算。目前,训练和推理 通常都在云端实现,只有对实时性要求很高的设备会交由设备端进行处理。
按技术架构来看,智能芯片可以分为通用类芯片(CPU、GPU、FPGA)、基 于 FPGA 的半定制化芯片、全定制化 ASIC 芯片、类脑计算芯片(IBM TrueNorth)。 另外,主要的人工智能处理器还有 DPU、BPU、NPU、EPU 等适用于不同场景 和功能的人工智能芯片。
随着互联网用户量和数据规模的急剧膨胀,人工智能发展对计算性能的要求 迫切增长,对 CPU 计算性能提升的需求超过了摩尔定律的增长速度。同时,受 限于技术原因,传统处理器性能也无法按照摩尔定律继续增长,发展下一代智能 芯片势在必行。未来的智能芯片主要是在两个方向发展:一是模仿人类大脑结构 的芯片,二是量子芯片。智能芯片是人工智能时代的战略制高点,预计到 2020 年人工智能芯片全球市场规模将突破百亿美元。
(2)智能传感器
智能传感器是具有信息处理功能的传感器。智能传感器带有微处理机,具备 采集、处理、交换信息等功能,是传感器集成化与微处理机相结合的产物。智能 传感器属于人工智能的神经末梢,用于全面感知外界环境。各类传感器的大规模 部署和应用为实现人工智能创造了不可或缺的条件。不同应用场景,如智能安防、 智能家居、智能医疗等对传感器应用提出了不同的要求。未来,随着人工智能应 用领域的不断拓展,市场对传感器的需求将不断增多,2020 年市场规模有望突 破 4600 亿美元。未来,高敏度、高精度、高可靠性、微型化、集成化将成为智 能传感器发展的重要趋势。
(3)分布式计算框架
面对海量的数据处理、复杂的知识推理,常规的单机计算模式已经不能支撑。 所以,计算模式必须将巨大的计算任务分成小的单机可以承受的计算任务,即云 计算、边缘计算、大数据技术提供了基础的计算框架。目前流行的分布式计算框 架如 OpenStack、Hadoop、Storm、Spark、Samza、Bigflow 等。各种开源深度学 习框架也层出不穷,其中包括 TensorFlow、Caffe、Keras、CNTK、Torch7、MXNet、 Leaf、Theano、DeepLearning4、Lasagne、Neon 等。
智能信息及数据
信息数据是人工智能创造价值的关键要素之一。我国庞大的人口和产业基数 带来了数据方面的天生优势。随着算法、算力技术水平的提升,围绕数据的采集、 分析、处理产生了众多的企业。目前,在人工智能数据采集、分析、处理方面的 企业主要有两种:一种是数据集提供商,以提供数据为自身主要业务,为需求方 提供机器学习等技术所需要的不同领域的数据集;另一种是数据采集、分析、处理综合性厂商,自身拥有获取数据的途径,并对采集到的数据进行分析处理,最 终将处理后的结果提供给需求方进行使用。对于一些大型企业,企业本身也是数 据分析处理结果的需求方。
智能技术服务