原子干涉仪还为惯性导航制造具有竞争力的陀螺仪和加速计,在某些情况下将对声纳或GPS的需求降至最低;陀螺罗盘、卫星定位、制导、导航重力测绘和海底避障等应用也可能即将问世。
图2 原子干涉仪从实验室研究到商业应用的时间表
德布罗意关于粒子像波一样传播的假设开创了物质波光学领域的研究。随后,原子干涉测量法受益于激光捕获和冷却原子、从光到原子的相干动量转移、光子学和纳米技术等方面的关键工作。原子干涉测量法的现代演示始于1991年(a),该领域在多个机构的支持下不断发展,包括美国国家科学基金会(NSF)、美国国家标准与技术研究院(NIST)、ARO、ONR、DARPA、NASA和DOE。原子干涉测量法在重力测量(b)、惯性导航、土木工程、地球科学和基本常数的测量中都有应用。30多年来的持续投资使原子干涉仪从实验室仪器(c)发展到基于空间的平台,催生了新的公司和商业原型(d)、移动装置(e)、2020年美国宇航局冷原子实验室在轨道上进行原子干涉测量实验(f)。即使有了这些进展,仍然需要克服工程上的挑战,以促进原子干涉仪的商业应用。例如,需要在激光系统、集成光学、原子源、真空系统和量子控制方面进行重点工作。
3.光学磁力计
基于蒸汽、玻色凝聚体或固态系统(如金刚石中的氮-空位(NV)中心)中原子自旋的光学磁力计可以为本地和远程传感、绘图和导航提供功能。磁力计可用于神经功能的生物医学研究,例如,通过脑磁图(MEG)了解阿尔茨海默病、帕金森病和认知能力。MEG等技术是对生物医学中的功能磁共振成像、脑电图(EEG)和冷冻电子显微镜的补充。NV中心还能对微米级样品的化学位移进行核磁共振光谱学分析,适用于研究单个细胞的蛋白质动力学。光学磁力计还可以支持生物样本的无创检测和表面科学的新工具。
图3 左为基于SQUID的MEG,右为基于光学磁力计的MEG
基于超导量子干涉器件(SQUID)的MEG设备(a)需要低温冷却,有很大的占地面积和开销。虽然适用于医学研究领域,但它们不太可能实现大规模的临床使用。基于光学磁力计的MEG设备(b)可以接近甚至超过SQUID MEG的灵敏度极限,而不需要低温冷却或大的操作空间。这些更小、更便携的MEG设备的一个应用可能是在现场诊断脑外伤。
图4 NV中心磁力测量法
金刚石中的氮-空位(NV)中心允许磁测量和核磁共振(NMR)光谱分析,以及空间分辨率接近纳米级的成像。NV中心的研发工作已经持续了20多年,参与者包括NSF、NIST、美国能源部、美国国防部和美国国立卫生研究院。显著的成就包括检测泛素蛋白中的多种核物种,如(a);使用NV中心的NMR光谱分辨率,如(b);使用使用单个NV中心的扫描共焦显微镜、纳米级磁场传感、使用量子钻石显微镜的单细胞成像、以及活体标本中单个神经元激发的检测。金刚石NV磁成像仪的可能的近期应用是检测由多发性硬化症等疾病引起的动作电位传导速度的变化。
4.利用量子光学效应的装置
利用量子光学效应的设备提供了突破显微镜、光谱和干涉测量中的标准量子极限的机会。非经典状态的光子使测量达到海森堡极限。例如,“压缩光”使NSF的激光干涉仪引力波观测站(LIGO)及其国际同类设备Virgo和KAGRA在传统的预期噪声基线以下运行。使用压缩光大大增加了黑洞碰撞的探测率,有效地扩大了LIGO可以研究的宇宙范围。
图5 LIGO从理论概念到国际观测活动的发展时间表