美国国家科学和技术委员会(NSTC)量子信息科学小组委员会(SCQIS)近日发布了名为《将量子传感器付诸实践》的报告,通过扩展量子信息科学(QIS)国家战略概述中的政策主题,增强了QIS国家战略。
报告概述
量子传感器和测量设备提供精确性、稳定性和新功能,为商业、政府和科学应用提供优势。例如用于全球定位系统(GPS)导航的原子钟和用于磁共振成像(MRI)的核自旋控制已经被广泛使用,对社会产生了变革性影响。在不久的将来,量子信息科学与技术(QIST)可以实现新一代类似的变革传感器。
产业界、学术界和政府部门之间的合作可以促进必要的科学和工程进步,为此,报告提出了一些建议,以协调研发并促进量子传感器的有效应用。国家科学技术委员会量子信息科学小组委员会(SCQIS)应利用其机构间工作组,促进以下建议的适当实施:
1.领导QIST研发的机构应该加快开发新的量子传感方法,优先考虑与最终用户建立适当的伙伴关系,以提高新量子传感器的技术成熟度;
2.使用传感器的机构应该进行可行性研究,并与QIST研发领导人共同测试量子原型系统,以确定有前途的技术,并专注于解决其机构任务的量子传感器;
3.支持研发工程的机构应该开发广泛适用的组件和子系统,如紧凑可靠的激光器和集成光学器件,以促进量子技术的发展并扩大规模经济;
4.各机构应该简化技术转让和收购的流程,以鼓励量子传感器技术的开发和早期采用。
这些建议以美国《量子信息科学国家战略概览》和《国家量子倡议(NQI)》法案为基础,加强了美国的QIST战略。其长期目标是通过量子技术的发展促进经济机会、安全应用和科学进步。在近中期,即未来1-8年,根据这些建议采取行动将加速实现量子传感器所需的关键发展。
什么是量子传感器?
量子传感器(Quantum Sensors)是利用量子力学特性(如原子能级、光子态或基本粒子的自旋)进行计量的设备。可为科学、技术和工业提供精密测量技术。量子传感器在不同领域均有影响:定位、导航、计时、本地和远程、生物医学、化学和材料科学、基础物理学和宇宙学。
表1 五类主要量子传感器
1.原子钟
原子钟是GPS导航的关键。当标准GPS信号不可用时,使用原子钟辅助网络和高精度时间传输协议可以为导航系统提供弹性。原子钟目前支持互联网和手机通信,是安全或高带宽应用所必需的。地质学、地震学、石油勘探、电网运营和金融服务业已经受益于芯片级原子钟(CSAC)。
图1 第一代芯片级原子钟(CSAC)的发展时间表
芯片级原子钟(CSAC)计划由美国国防部高级研究计划局(DARPA)发起,在2001年NIST研讨会的推动下,建立在紧凑型激光器、相干布居捕获(CPT)和微加工等方面取得的一些进展之上。从基础研发(a-c),到工程和原型设计(d-e),到商业化产品的例子(f),CSAC花了十多年的时间,在学术界、政府和产业界的协调下,持续投资了近1亿美元。多个项目和行业合作伙伴关系为CSAC的发展做出了贡献,实现关键的组件技术和商业化,销售量超过10万。
2.原子干涉仪
用作重力仪和重力梯度仪的原子干涉仪有望用于火山学、地下水、矿藏、潮汐动力学和冰层等地球科学研究。图2显示了原子干涉仪从发明到商业应用的一些里程碑。原子干涉仪可能很快就能绘制地下结构和空洞的地图,并有可能用于车辆检查和隧道探测;改进的重力仪有可能降低土木工程和地质调查的成本。
原子干涉仪在基础物理学领域的应用包括万有引力常数(大G)的测量、等效原理(自由落体的普遍性)的测试、毫米级的引力测量、暗物质粒子的搜索以及引力波探测的可能替代方法。