更多测试,更复杂系统,更少时间
电池动力总成技术和内燃机(ICE)动力总成技术从根本上来说是截然不同的。因此两种技术需要一系列截然不同的流程和测试方法。当这两种技术融合到混合动力汽车(无缝集成)时,测试时间和成本有可能会大幅增加。
ICE完全是物理测试,测试内容是燃烧机械、压力、温度、流体、机械连接和动力传递、排气控制等,通过涡轮增压器和增压器以及其他方法提高燃烧室的爆炸效率或能量,将线性活塞运动转换为旋转扭矩,并使用飞轮来平衡能量输出。
而电动动力总成则完全是电气测试,测试的是电力电子和开关频率、电压和电流、感应和反电动势;电池容量、放电率、逆变器和转换器的热管理以及再生功率调节;电动机/发电机的相角和层压板几何形状以及磁铁位置和磁通线。
当两种技术以各种方式组合成混合动力系统时,就需要进行集成测试,包括管理ICE和电子元件之间相互作用的控制方案、状态图以及规则,以确保系统能够在所有驾驶条件和场景下做出适当响应。
混合动力汽车(任何组合方式)比任何ICE或纯电动汽车(BEV)都更为复杂。
图1.传统内燃机动力总成和纯电动力总成之间的各种组合构造。
日益复杂的系统所包含的组件也在不断增加,这意味着故障概率增加了。对于测试工程师来说,这是1 + 1 >> 2。他们不仅要执行传统的ICE测试,还必须对电动动力系统执行新的且要求更高的子系统测试。测试工程师还必须设计广泛的集成测试覆盖范围,以确保两种技术无缝协同工作,提供混合动力汽车设计时所期望的效率、性能和驾驶体验。
满足混合动力电动汽车测试需求
电动动力总成部件正在推动更复杂的测试需求。测试工具正在不断发展以跟上需求变化的步伐。测试工程师也必须紧跟不断发展的技术,才能满足汽车行业由于高速创新和新技术引入所带来测试要求变化。以下是电动动力总成部件所引入的一些新测试要求,以及不断进步和完善、能够满足这些要求的测试工具。
更高保真度且更复杂的建模
相比ICE,电动机和逆变器的响应速度更快,且在其工作范围内表现出高度非线性特征。来自ECU的控制信号非常快(2-20kHZ),专用电机模型需要以高出100倍的速度运行(200kHz至2MHz),以便在硬件在环(HIL)测试中准确地表示系统。如果是在用于ICE HIL基于处理器的实时系统上,这是无法高效实现的。因此,NI等测试系统提供商正在开发基于FPGA的仿真工具,以在所需的微秒级循环速率下运行使用专用电子建模工具创建的模型。斯巴鲁已经成功实现了这样一个系统,测试时间大幅缩短,仅为在测功机上进行等效测试所需估计时间的1/20。
功率级测试
通常,ECU和逆变器封装在一起,使得信号电平(-10到10V和几mA)的测试变得非常困难。在全功率下进行测试,拉灌实际电流要比把组件拆开进行测试要方便得多。但是,这意味着在高达200千瓦的功率电平下进行测试。这么大的功率电平需要使用能够提供通道间隔离的专用设备和电源,可以吸收和提供如此大规模的动态负载,例如NI联盟商Loccioni为法拉利混合动力跑车的Magneti Marelli逆变器开发的终端逆变器测试平台。
电池模块/电池组验证
电池,尤其是高容量插入式混合电池,必须在单元、模块和电池组级别上分别进行特性分析。电池单元以串联/并联方式组成电池组,需要测试的电压范围高达0-800V以及相对于共模电压的测量精度要求非常高,这些测试可能非常困难(或非常昂贵)。