主信号的眼图显示了定向耦合器插损和回损的影响。
我们使用的设置包括把汽车以太网转换到SMA连接器的夹具、定向耦合器、把SMA转换到汽车以太网电缆的夹具。
眼图显示了在安装定向耦合器后插损和回损对汽车以太网信号的影响。最大幅度是100 mVpp,因为定向耦合器采用定向原理工作,插损和回损结果使眼图闭合。直到最近,定向耦合器方法一直是默认的汽车以太网测试方法,因为之前一直没有泰克基于软件的信号分隔测试方法。
泰克信号分隔方法
泰克信号分隔方法于2019年7月问世,它同时从主测试点和从测试点查看电压波形和电流波形,来分隔全双工信号,并采用专有软件算法提供分隔后的信号。泰克信号分隔方法是一种基于软件的解决方案,它不用剪断汽车以太网电缆,用户就能看到真实信号。这种方法的优势之一,是它可以显示主信号和从信号,而不会像定向耦合器方法那样增加插损和回损及反嵌影响。
泰克信号分隔方法。
下面的眼图采用泰克信号分隔软件。与定向耦合器眼图相比,信号质量更高,眼图“更清楚”。用户可以准确地表示汽车以太网信号,实现信号质量测量,并能够更快地确定潜在的性能问题。
采用泰克信号分隔软件的主信号的眼图。
信号分隔方法与定向耦合方法比较
我们使用上面提到的两种测试方法,进行测量测试,对比测试结果。
在测试中,我们先使用泰克信号分隔技术、一只电流探头和电压探头设置和运行测试。对定向耦合器方法,我们剪断汽车以太网电缆,插入带有SMA连接器的定向耦合器。然后我们运行测试,测试条件与定向耦合器方法相同,然后调用信号分隔方法波形,对比这两种测试方法。
泰克信号分隔方法和定向耦合方法的测试结果对比。
比较结果显示,这两种方法的幅度存在着明显差异,说明了定向耦合器的影响。在采用定向耦合器方法时,主信号的幅度约为90 mVpp (峰峰值电压),从信号的幅度约为85 mVpp。相比之下,信号分隔方法中主信号的幅度约为1.5 Vpp,从信号的幅度约为1.45 Vpp。在本例中,定向耦合器增加了20 dB损耗。
为消除定向耦合器引入的断点,反嵌必不可少,以补偿插损和回损。如前所述,尽管有可能能够消除定向耦合器的影响,但反嵌可能会放大系统中的噪声,影响测量和表征精度。还应该指出,反嵌可能会耗用很长时间,极具挑战性。此外,对汽车的系统级测试和维护保养来说,剪断电缆、安装定向耦合器可能会极具挑战性。
相比之下,信号分隔方法不用干扰系统就能显示真实信号。通过这种全新的汽车以太网测试方法,用户可以表征信号,精度更高,时间更少,而且不会增加费用和测量挑战。用户可以使用这种方法,在系统级执行信号完整性测试,执行应用环境中提供的所有测试。
小结
本文介绍了汽车以太网、全双工通信、隔离主信号与从信号的需求、信号分隔测试方法,以及当前定向耦合器插入方法与泰克新型信号隔离方法比较。
通过比较两种汽车以太网测试方法,可以了解泰克信号分隔解决方案的优势,如比定向耦合器信号方法更准确地查看真实信号,简化了元器件级和系统级测试设置,缩短了测试时间,满足了汽车整个生命周期的测试需要。